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Scope of the Workshop 

Prescriptive Bayesian decision making supported by the efficient theoretically well-founded algorithms is 
known to be a powerful tool.  However, its application within multiple-participants’ settings needs an 
efficient support of imperfect participant (decision maker, agent), which is characterised by limited cognitive, 
acting and evaluative resources. 

The interacting and multiple-task-solving participants prevail in the natural (societal, biological) systems and 
become more and more important in the artificial (engineering) systems. Knowledge of conditions and 
mechanisms influencing the participant’s individual behaviour is a prerequisite to better understanding and 
rational improving of these systems. The diverse research communities permanently address these topics 
focusing either on theoretical aspects of the problem or (more often) on practical solution within a particular 
application.  However, different terminology and methodologies used significantly impede further 
exploitation of any advances occurred. The workshop will bring the experts from different scientific 
communities to complement and generalise the knowledge gained relying on the multi-disciplinary wisdom. 
It extends the list of problems of the preceding NIPS workshop: 

How should we formalise rational decision making of a single imperfect decision maker? Does the answer 
change for interacting imperfect decision makers? How can we create a feasible prescriptive theory for 
systems of imperfect decision makers? 

The workshop especially welcomes contributions addressing the following questions: 

What can we learn from natural, engineered, and social systems? How emotions influence decision making? 
How to present complex prescriptive outcomes to the human?  Do common algorithms really support 
imperfect decision makers? What is the impact of imperfect designers of decision-making systems? 

The workshop aims to brainstorm on promising research directions, present relevant case studies and 
theoretical results, and to encourage collaboration among researchers with complementary ideas and 
expertise. The workshop will be based on invited talks, contributed talks and posters. Extensive moderated 
and informal discussions ensure targeted exchange. 

 

List of Invited Talks  

• Automated Preferences Elicitation 
Miroslav Kárný, Tatiana V.Guy 

• Automated Explanations for MDP Policies  
Omar Zia Khan, Pascal Poupart, James P. Black 

• Modeling Humans as Reinforcement Learners: How to Predict Human Behavior in Multi˗ Stage 
Games  
Ritchie Lee, David H. Wolpert, Scott Backhaus, Russell Bent, James Bono, Brendan Tracey  

• Random Belief Learning 
David Leslie 

• An Adversarial Risk Analysis Model for an Emotional Based Decision Agent  
Javier G. Rázuri, Pablo G. Esteban, David Rios Insua 

• Bayesian Combination of Multiple, Imperfect Classifiers 
Edwin Simpson, Stephen Roberts, Ioannis Psorakis, Arfon Smith, Chris Lintott 

• Emergence of Reverse Hierarchies in Sensing and Planning by Optimizing Predictive Information  
Naftali Tishby 

• Effect of Emotion on the Imperfectness of Decision Making 
Alessandro E.P. Villa, Marina Fiori, Sarah Mesrobian, Alessandra Lintas,  
Vladyslav Shaposhnyk, Pascal Missonnier  
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Emergence of reverse hierarchies in sensing and
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Abstract

Efficient planning requires prediction of the future. Valuable predictions are based
on information about the future that can only come from observations of past
events. Complexity of planning thus depends on the information the past of an
environment contains about its future, or on the ”predictive information” of the
environment. This quantity, introduced by Bilaek et. al., was shown to be sub-
extensive in the past and future time windows, i.e.; to grow sub-linearly with the
time intervals, unlike the full complexity (entropy) of events which grow linearly
with time in stationary stochastic processes. This striking observation poses inter-
esting bounds on the complexity of future plans, as well as on the required memo-
ries of past events. I will discuss some of the implications of this subextesivity of
predictive information for decision making and perception in the context of pure
information gathering (like gambling) and more general MDP and POMDP set-
tings. Furthermore, I will argue that optimizing future value in stationary stochas-
tic environments must lead to hierarchical structure of both perception and actions
and to a possibly new and tractable way of formulating the POMDP problem.
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Abstract

This paper introduces a novel framework for modeling interacting humans in a
multi-stage game environment by combining concepts from game theory and re-
inforcement learning. The proposed model has the following desirable charac-
teristics: (1) Bounded rational players, (2) strategic (i.e., players account for one
another’s reward functions), and (3) is computationally feasible even on moder-
ately large real-world systems. To do this we extend level-K reasoning to policy
space to, for the first time, be able to handle multiple time steps. This allows us to
decompose the problem into a series of smaller ones where we can apply standard
reinforcement learning algorithms. We investigate these ideas in a cyber-battle
scenario over a smart power grid and discuss the relationship between the behav-
ior predicted by our model and what one might expect of real human defenders
and attackers.

1 Introduction

We present a model of interacting human beings that advances the literature by combining con-
cepts from game theory and computer science in a novel way. In particular, we introduce the first
time-extended level-K game theory model [1, 2]. This allows us to use reinforcement learning (RL)
algorithms to learn each player’s optimal policy against the level K−1 policies of the other players.
However, rather than formulating policies as mappings from belief states to actions, as in partially
observable Markov decision processes (POMDPs), we formulate policies more generally as map-
pings from a player’s observations and memory to actions. Here, memory refers to all of a player’s
past observations.

This model is the first to combine all of the following characteristics. First, players are strategic in
the sense that their policy choices depend on the reward functions of the other players. This is in
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Figure 2: An example iterated semi
Bayes net.

contrast to learning-in-games models whereby players do not use their opponents’ reward informa-
tion to predict their opponents’ decisions and to choose their own actions. Second, this approach
is computationally feasible even on real-world problems. This is in contrast to equilibrium models
such as subgame perfect equilibrium and quantal response equilibrium [3]. This is also in contrast to
POMDP models (e.g. I-POMDP) in which players are required to maintain a belief state over spaces
that quickly explode. Third, with this general formulation of the policy mapping, it is straightfor-
ward to introduce experimentally motivated behavioral features such as noisy, sampled or bounded
memory. Another source of realism is that, with the level-K model instead of an equilibrium model,
we avoid the awkward assumption that players’ predictions about each other are always correct.

We investigate all this for modeling a cyber-battle over a smart power grid. We discuss the rela-
tionship between the behavior predicted by our model and what one might expect of real human
defenders and attackers.

2 Game Representation and Solution Concept

In this paper, the players will be interacting in an iterated semi net-form game. To explain an iterated
semi net-form game, we will begin by describing a semi Bayes net. A semi Bayes net is a Bayes
net with the conditional distributions of some nodes left unspecified. A pictoral example of a semi
Bayes net is given in Figure 1. Like a standard Bayes net, a semi Bayes net consist of a set of nodes
and directed edges. The ovular nodes labeled “S” have specified conditional distributions with the
directed edges showing the dependencies among the nodes. Unlike a standard Bayes net, there are
also rectangular nodes labeled “U” that have unspecified conditional dependencies. In this paper,
the unspecified distributions will be set by the interacting human players. A semi net-form game,
as described in [4], consists of a semi Bayes net plus a reward function mapping the outcome of the
semi Bayes net to rewards for the players.

An iterated semi Bayes net is a Bayes net which has been time extended. It comprises of a semi
Bayes net (such as the one in Figure 1), which is replicated T times. Figure 2 shows the semi Bayes
net replicated three times. A set of directed edges L sets the dependencies between two successive
iterations of the semi Bayes net. Each edge in L connects a node in stage t− 1 with a node in stage
t as is shown by the dashed edges in Figure 2. This set of L nodes is the same between every two
successive stages. An iterated semi net-form game comprises of two parts: an iterated semi Bayes
net and a set of reward functions which map the results of each step of the semi Bayes net into an
incremental reward for each player. In Figure 2, the unspecified nodes have been labeled “UA” and
“UB” to specify which player sets which nodes.

Having described above our model of the strategic scenario in the language of iterated semi net-form
games, we now describe our solution concept. Our solution concept is a combination of the level-K
model, described below, and reinforcement learning (RL). The level-K model is a game theoretic
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solution concept used to predict the outcome of human-human interactions. A number of studies
[1, 2] have shown promising results predicting experimental data in games using this method. The
solution to the level-K model is defined recursively as follows. A level K player plays as though all
other players are playing at level K − 1, who, in turn, play as though all other players are playing
at level K − 2, etc. The process continues until level 0 is reached, where the level 0 player plays
according to a prespecified prior distribution. Notice that running this process for a player at K ≥ 2
results in ricocheting between players. For example, if player A is a level 2 player, he plays as
though player B is a level 1 player, who in turn plays as though player A is a level 0 player playing
according to the prior distribution. Note that player B in this example may not actually be a level 1
player in reality – only that player A assumes him to be during his reasoning process.

This work extends the standard level-K model to time-extended strategic scenarios, such as iterated
semi net-form games. In particular, each Undetermined node associated with player i in the iterated
semi net-form game represents an action choice by player i at some time t. We model player i’s
action choices using the policy function, ρi, which takes an element of the Cartesian product of
the spaces given by the parent nodes of i’s Undetermined node to an action for player i. Note that
this definition requires a special type of iterated semi-Bayes net in which the spaces of the parents
of each of i’s action nodes must be identical. This requirement ensures that the policy function is
always well-defined and acts on the same domain at every step in the iterated semi net-form game.
We calculate policies using reinforcement learning (RL) algorithms. That is, we first define a level
0 policy for each player, ρ0i . We then use RL to find player i’s level 1 policy, ρ1i , given the level 0
policies of the other players, ρ0−1, and the iterated semi net-form game. We do this for each player i
and each level K.1

3 Application: Cybersecurity of a Smart Power Network

In order to test our iterated semi net-form game modeling concept, we adopt a model for analyz-
ing the behavior of intruders into cyber-physical systems. In particular, we consider Supervisory
Control and Data Acquisition (SCADA) systems [5], which are used to monitor and control many
types of critical infrastructure. A SCADA system consists of cyber-communication infrastructure
that transmits data from and sends control commands to physical devices, e.g. circuit breakers in
the electrical grid. SCADA systems are partly automated and partly human-operated. Increasing
connection to other cyber systems creating vulnerabilities to SCADA cyber attackers [6].

Figure 3 shows a single, radial distribution circuit [7] from the transformer at a substation (node
1) serving two load nodes. Node 2 is an aggregate of small consumer loads distributed along the
circuit, and node 3 is a relatively large distributed generator located near the end of the circuit. In
this figure Vi, pi, and qi are the voltage, real power, and reactive power at node i. Pi, Qi, ri, and
xi are the real power, reactive power, resistance and reactance of circuit segment i. Together, these
values represent the following physical system [7], where all terms are normalized by the nominal
system voltage.

P2 = −p3, Q2 = −q3, P1 = P2 + p2, Q1 = Q2 + q2 (1)
V2 = V1 − (r1P1 + x1Q1), V3 = V2 − (r2P2 + x2Q2) (2)

In this model, r, x, and p3 are static parameters, q2 and p2 are drawn from a random distribution
at each step of the game, V1 is the decision variable of the defender, q3 is the decision variable of
the attacker, and V2 and V3 are determined by the equations above. The injection of real power
p3 and reactive power q3 can modify the Pi and Qi causing the voltage V2 to deviate from 1.0.
Excessive deviation of V2 or V3 can damage customer equipment or even initiate a cascading failure
beyond the circuit in question. In this example, the SCADA operator’s (defender’s) control over q3
is compromised by an attacker who seeks to create deviations of V2 causing damage to the system.

In this model, the defender has direct control over V1 via a variable-tap transformer. The hardware
of the transformer limits the defenders actions at time t to the following domain

DD(t) = 〈min(vmax, V1,t−1 + v), V1,t−1,max(vmin, V1,t−1 − v)〉
1Although this work uses level-K and RL exclusively, we are by no means wedded to this solution concept.

Previous work on semi net-form games used a method known as Level-K Best-of-M/M’ instead of RL to
determine actions. This was not used in this paper because the possible action space is so large.
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Figure 3: Schematic drawing of the three-node distribution circuit.

where v is the voltage step size for the transformer, and vmin and vmax represent the absolute min
and max voltage the transformer can produce. Similarly, the attacker has taken control of q3 and
its actions are limited by its capacity to produce real power, p3,max as represented by the following
domain.

DA(t) = 〈−p3,max, . . . , 0, . . . , p3,max〉
Via the SCADA system and the attacker’s control of node 3, the observation spaces of the two
players includes

ΩD = {V1, V2, V3, P1, Q1,MD}, ΩA = {V2, V3, p3, q3,MA}

where MD and MA are used to denote each two real numbers that represent the respective player’s
memory of the past events in the game. Both the defender and attacker manipulate their controls in
a way to increase their own rewards. The defender desires to maintain a high quality of service by
maintaining the voltages V2 and V3 near the desired normalized voltage of one while the attacher
wishes to damage equipment at node 2 by forcing V2 beyond operating limits, i.e.

RD = −
(
V2 − 1

ε

)2

−
(
V3 − 1

ε

)2

, RA = Θ[V2 − (1 + ε)] + Θ[(1− ε)− V2]

Here, ε ∼ 0.05 for most distribution system under consideration, Θ is a Heaviside step function.

Level 1 defender policy The level 0 defender is modeled myopically and seeks to maximize his
reward by following a policy that adjusts V1 to move the average of V2 and V3 closer to one, i.e.

πD(V2, V3) = arg minV1∈DD(t)

(V2 + V3)

2
− 1

Level 1 attacker policy The level 0 attacker adopts a drift and strike policy based on intimate
knowledge of the system. If V2 < 1, we propose that the attacker would decrease q3 by lowering
it by one step. This would cause Q1 to increase and V2 to fall even farther. This policy achieves
success if the defender raises V1 in order to keep V2 and V3 in the acceptable range. The attacker
continues this strategy, pushing the defender towards vmax until he can quickly raise q3 to push V2
above 1 + ε . If the defender has neared vmax, then a number of time steps will be required to for
the defender to bring V2 back in range. More formally this policy can be expressed as
LEVEL0ATTACKER()
1 V ∗ = maxq∈DA(t) |V2 − 1|;
2 if V ∗ > θA
3 then return arg maxq∈DA(t) |V2 − 1|;
4 if V2 < 1
5 then return q3,t−1 − 1;
6 return q3,t−1 + 1;

where θA is a threshold parameter.

3.1 Reinforcement Learning Implementation

Using defined level 0 policies as the starting point, we now bootstrap up to higher levels by training
each level K policy against an opponent playing level K − 1 policy. To find policies that maximize
reward, we can apply any algorithm from the reinforcement learning literature. In this paper, we use
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an ε-greedy policy parameterization (with ε = 0.1) and SARSA on-policy learning [8]. Training
updates are performed epoch-wise to improve stability. Since the players’ input spaces contain
continuous variables, we use a neural-network to approximate the Q-function [9]. We improve
performance by scheduling the exploration parameter ε in 3 segments during training: An ε of near
unity, followed by a linearly decreasing segment, then finally the desired ε.

3.2 Results and Discussion

We present results of the defender and attacker’s behavior at various level K. We note that our
scenario always had an attacker present, so the defender is trained to combat the attacker and has no
training concerning how to detect an attack or how to behave if no attacker is present. Notionally,
this is also true for the attacker’s training. However in real-life the attacker will likely know that
there is someone trying to thwart this attack.

Level 0 defender vs. level 0 attacker The level 0 defender (see Figure 4(a)) tries to keep both
V2 and V3 close to 1.0 to maximize his immediate reward. Because the defender makes steps in V1
of 0.02, he does nothing for 30 < t < 60 because any such move would not increase his reward.
For 30 < t < 60, the p2, q2 noise causes V2 to fluctuate, and the attacker seems to randomly drift
back and forth in response. At t = 60, the noise plus the attacker and defender actions breaks
this “symmetry”, and the attacker increases his q3 output causing V2 and V3 to rise. The defender
responds by decreasing V1, indicated by the abrupt drops in V2 and V3 that break up the relatively
smooth upward ramp. Near t = 75, the accumulated drift of the level 0 attacker plus the response
of the level 0 defender pushes the system to the edge. The attacker sees that a strike would be
successful (i.e., post-strike V2 < 1− θA), and the level 0 defender policy fails badly. The resulting
V2 and V3 are quite low, and the defender ramps V1 back up to compensate. Post strike (t >
75), the attackers threshold criterion tells him that an immediate second strike would would not be
successful, however, this shortcoming will be resolved via level 1 reinforcement learning. Overall,
this is the behavior we have built into the level 0 players.

Level 1 defender vs. level 0 attacker During the level 1 training, the defender likely experiences
the type of attack shown in Figure 4(a) and learns that keeping V1 a step or two above 1.0 is a good
way to keep the attacker from putting the system into a vulnerable state. As seen in Figure 4(b), the
defender is never tricked into performing a sustained drift because the defender is willing to take
a reduction to his reward by letting V3 stay up near 1.05. For the most part, the level 1 defender’s
reinforcement learning effectively counters the level 0 attacker drift-and-strike policy.

Level 0 defender vs. level 1 attacker The level 1 attacker learning sessions correct a shortcoming
in the level 0 attacker. After a strike (V2 < 0.95 in Figure 4(a)), the level 0 attacker drifts up from
his largest negative q3 output. In Figure 4(c), the level 1 attacker anticipates that the increase in V2
when he moves fromm = −5 tom = 5 will cause the level 0 defender to drop V1 on the next move.
After this drop, the level 1 attacker also drops from m = +5 to −5. In essence, the level 1 attacker
is leveraging the anticipated moves of the level 0 defender to create oscillatory strikes that push V2
below 1− ε nearly every cycle.
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Abstract

Explaining policies of Markov Decision Processes (MDPs) is complicated due
to their probabilistic and sequential nature. We present a technique to explain
policies for factored MDP by populating a set of domain-independent templates.
We also present a mechanism to determine a minimal set of templates that, viewed
together, completely justify the policy. We demonstrate our technique using the
problems of advising undergraduate students in their course selection and evaluate
it through a user study.

1 Introduction

Sequential decision making is a notoriously difficult problem especially when there is uncertainty in
the effects of the actions and the objectives are complex. MDPs [10] provide a principled approach
for automated planning under uncertainty. State-of-the-art techniques provide scalable algorithms
for MDPs [9], but the bottleneck is gaining user acceptance as it is harder to understand why certain
actions are recommended. Explanations can enhance the user’s understanding of these plans (when
the policy is to be used by humans like in recommender systems) and help MDP designers to debug
them (even when the policy is to be used by machines, like in robotics). Our explanations highlight
key factors through a set of explanation templates. The set of templates are sufficient, such that they
justify the recommended action, yet also minimal, such that the size of the set cannot be smaller. We
demonstrate our technique through a course-advising MDP and evaluate our explanations through a
user study. A more detailed description of our work can be found in [6].

2 Background

A Markov decision process (MDP) is defined by a set S of states s, a set A of actions a, a transition
model (the probability Pr (s′|s, a) of an action a in state s leading to state s′), a reward model (the
utility/reward R (s, a) for executing action a in state s), and a discount factor γ ∈ [0, 1). Factored
MDPs [1] are typically used for MDPs with large state space where states are determined by values
of some variables. A scenario sc is defined as the set of states obtained by assigning values to a
subset of state variables. A policy π : S → A is a mapping from states to actions. The value V π (s)
of a policy π when starting in state s is the sum of the expected discounted rewards earned by
executing policy π. A policy can be evaluated by using Bellman’s equation V π (s) = R (s, π (s)) +
γ

∑
s′∈S Pr (s′|s, π (s)) · V π (s′). We shall use an alternative method to evaluate a policy based

on occupancy frequencies. The discounted occupancy frequency (hereafter referred as occupancy
frequency) λπs0 (s′) is the expected (discounted) number of times we reach state s′ from starting state
s0 by executing policy π. Occupancy frequencies can be computed by solving Eq. 1.

λπs0 (s′) = δ (s′, s0) + γ
∑
s∈S

Pr (s′|s, π (s)) · λπs0 (s) ∀s′ (1)
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where δ (s′, s0) is a Kroenecker delta which assigns 1 when s′ = s0 and 0 otherwise. The occupancy
frequencies for a scenario (or a set of scenarios), λπs0 (sc), is the expected number of times we reach
a scenario sc, from starting state s0, by executing policy π i.e., λπs0 (sc) =

∑
s∈sc λ

π
s0 (s). Let scr

be a set of scenarios with reward value r. The dot product of occupancy frequencies and rewards
gives the value of a policy, as shown in Eq. 2.

V π (s0) =
∑
r

λπs0(scr) · r (2)

An optimal policy π∗ earns the highest value for all states (i.e., V π∗(s) ≥ V π(s) ∀π, s).

3 Explanations for MDPs

3.1 Templates for Explanations

Our explanation answers the question, “Why has this action been recommended?” by populating
generic templates, at run-time, with domain-specific information from the MDP i.e., occupancy
frequency of a scenario. The reward function implicitly partitions the state space in regions with
equal reward value. These regions can be defined as partial variable assignments corresponding to
scenarios or sets of scenarios. An explanation then could be the frequency of reaching a scenario
is highest (or lowest). This is especially useful when this scenario also has a relatively high (or
low) reward. Below we describe templates in which the underlined phrases (scenarios and their
frequencies) are populated at run-time.

• Template 1: “ActionName is the only action that is likely to take you to
V ar1 = V al1, V ar2 = V al2, ... about λ times, which is higher (or lower) than any other
action”

• Template 2: “ActionName is likely to take you to V ar1 = V al1, V ar2 = V al2, ... about
λ times, which is as high (or low) as any other action”

• Template 3: “ActionName is likely to take you to V ar1 = V al1, V ar2 = V al2, ... about
λ times”

While these templates provide a method to present explanations, multiple templates can be populated
even for non-optimal actions; a non-optimal action can have the highest frequency of reaching a
scenario without having the maximum expected utility. Thus, we need to identify a set of templates
that justify the optimal action.

3.2 Minimal Sufficient Explanations

We define an explanation as sufficient if it can prove that the recommendation is optimal, i.e., the
selected templates show the action is optimal without needing additional templates. A sufficient ex-
planation cannot be generated for a non-optimal action since an explanation for another action (e.g.,
the optimal action) will have a higher utility. A sufficient explanation is also minimal if it includes
the minimum number of templates needed to ensure it is sufficient. The minimality constraint is
useful for users and sufficiency constraint is useful for designers.

Let s0 be the state where we need to explain why π∗ (s0) is an optimal action. We can compute the
value of the optimal policy V π

∗
(s0) or the Q-function1 Qπ

∗
(s0, a) using Eq. 2. Since a template is

populated by a frequency and a scenario, the utility of this pair in a template is λπ
∗

s0 (scr) · r. Let E
be the set of frequency-scenario pairs that appear in an explanation. If we exclude a pair from the
explanation, the utility is λπ

∗

s0 (sci) · r̄, where rmin is the minimum value for the reward variable.
This definition indicates that the worst is assumed for the scenario in this pair. The utility of an
explanation VE is

1In reinforcement learning, the Q-function Qπ(s, a) denotes the value of executing action a in state s
followed by policy π.

2



VE =
∑
i∈E

λπ
∗

s0 (sci) · ri +
∑
j /∈E

λπ
∗

s0 (scj) · rmin (3)

where the first part includes the utility from all the pairs in the explanation and the second part
considers the worst case for all other pairs. For an explanation to be sufficient, its utility has to
be higher than the next best action, i.e., V π

∗ ≥ VE > Qπ
∗

(s0, a) ∀a 6= π∗ (s0). For it to be
minimal, it should use the fewest possible pairs. Let us define the gain of including a pair in an
explanation as the difference between the utility of including versus excluding that pair (λπ

∗

s0 (sci) ·
ri − λπ

∗

s0 (sci) · rmin). To find a minimal sufficient explanation, we can sort the gains of all pairs
in descending order and select the first k pairs that ensure VE ≥ Qπ

∗
(s0, a). This provides our

minimal sufficient explanation.

3.3 Workflow and Algorithm

The designer identifies the states and actions, and specifies the transition and reward functions. The
optimal policy is computed, using a technique such as value iteration, and is consulted to determine
the optimal action. Now an explanation can be requested. The pseudo code for the algorithm to
compute a minimal sufficient explanation is shown in Algorithm 1.

Algorithm 1 Computing Minimal Sufficient Explanations

The function ComputeScenarios returns the set of scenarios with reward value r which is avail-
able in the encoding of the reward function. The function ComputeOccupancyFrequency is
the most expensive step which corresponds to solging the system of linear system defined in Eq. 1,
which has a worst case complexity that is cubic in the size of the state space. However, in prac-
tice, the running time can often be sublinear by using variable elimination to exploit conditional
independence and algebraic decision diagrams [5] to automatically aggregate states with identical
values/frequencies. The function GenerateTemplates chooses an applicable template, from
the list of templates, in the order of the list, with the last always applicable.

4 Experiments and Evaluation

4.1 Sample Explanations

We ran experiments on course-advising and hand-washing MDPs [6]. We only discuss the course-
advising domain here due to space considerations. The transition model was obtained by using
historical data collected over several years at the University of Waterloo. The reward function pro-
vides rewards for completing different degree requirements. The horizon of this problem is 3 steps,
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each step representing one term and the policy emits a pair of courses to take in that term. The
problem has 117.4 million states. We precomputed the optimal policy since it does not need to be
recomputed for every explanation. We were able to compute explanations in approximately 1 sec-
ond on a Pentium IV 1.66 GHz laptop with 1GB RAM using Java on Windows XP with the optimal
policy and second best action precomputed. A sample explanation is shown below.

• Action TakeCS343&CS448 is the best action because:-

– It’s likely to take you to CoursesCompleted = 6, TermNumber = Final about
0.86 times, which is as high as any other action

4.2 User Study with Students

We conducted a user study to evaluate explanations for course advising. We recruited 37 students
and showed 3 different recommendations with explanations for different states. For each expla-
nation, they were asked to rate it on various factors such as comprehension, trust-worthiness and
usefulness with partial results shown in Figure 1. 59% (65/111) of the respondents indicated that
they were able to understand our explanation without any other information; the rest also wanted to
know the occupancy frequencies for some other actions. We can provide this information as it is
already computed. 76% (84/111) believed that the explanation provided by our system was accurate,
with a few wanting to know our sample size to judge the accuracy. 69% (77/111) indicated that they
would require extra information beyond that presented in the explanation. When asked what other
type of information is needed, we discovered that they wanted the model to cater to preferences such
as student’s interest, future career plans, and level of difficulty rather than the explanation being in-
adequate for our existing model. An important indicator of the usefulness of these explanations is
that 71% (79/111) of the students mentioned that the explanation provided them with extra infor-
mation that helped them in making a decision. Also while some students, 23% (26/111), initially
disagreed with the recommendation, in 35% (9/26) of these cases our explanation convinced them
to change their mind and agree with the original recommendation. The rest disagreed primarily
because they wanted a more elaborate model, so no explanation could have convinced them.

We also asked students if they were provided with our system, in addition to the option of discussing
their choices with an undergraduate advisor, would they use it. 86% of them mentioned they would
use it from home and 89% mentioned they would use it before meeting with an advisor to examine
different options for themselves. These numbers indicate substantial interest in our explanations.
The explanations generated by our system are generic, while those provided by the advisors are
domain-specific. The user study indicates that these two types of explanations are complementary
and students would like to access our explanations in addition to consulting advisors.

5 Relationship to Other Explanations Strategies

Explanations have been considered an essential component of intelligent reasoning systems and var-
ious strategies have been devised to generate them. Explanations for expert systems are generally
in the form of execution traces, such as in MYCIN [2]. Execution traces indicate the rules used in
arriving at a conclusion. There are no specific rules in an MDP and the optimal decision is made
by maximizing the expected utility which involves considering all of the transition and reward func-
tion. Thus, in our explanation we highlight the more important parts of the transition and reward
function. Xplain [12] is an example of an intelligent tutoring system that also provided justifica-
tions of its decisions. In addition to the rules used by the expert system, it also needed additional
domain knowledge to generate these explanations. Our current approach does not use any additional
domain knowledge, however this also means we cannot justify the correctness of the transition or
reward function. We can only argue about the optimal action using the specified transition and re-
ward functions. Explanations in single-shot recommender systems [13] and case-based reasoning
systems [11] are typically based on identifying similar clusters of users or cases and then demon-
strating the similarity of the current choice to a cluster or case. Since MDPs are not based on the
principle of recommending actions based on similarity, such an approach to generate explanations
would be infeasible. Herlocker et al. [4] presented the idea of highlighting key data leading to a
recommendation for explanations in recommender systems. Our approach is also motivated by this
idea with the key difference that choices in MDPs also impact future states and actions rather than
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Figure 1: User Perception of MDP-Based Explanations

explaining an isolated decision. McGuinness et al. [8] identify several templates to present explana-
tions in task processing systems based on predefined workflows. Our approach also uses templates,
but we cannot use predefined workflows due to the probabilistic nature of MDPs.

Lacave et al. [7] presented several approaches to explain graphical models, including Bayesian net-
works and influence diagrams. Their explanations require a background in decision analysis and
they present utilities of different actions graphically and numerically. We focus on users without
any knowledge of utility theory. Elizalde et al. [3] present an approach to generate explanations for
an MDP policy that recommends actions for an operator in training. A set of explanations is defined
manually by an expert and their algorithm determines a relevant variable to be presented as explana-
tion. Our approach does not restrict to a single relevant variable and considers the long-term effects
of the optimal action (beyond one time step). We also use generic, domain-independent templates
and provide a technique to determine a minimum set of templates that can completely justify an
action.

6 Significance and Implications

While there has been a lot of work on explanations for intelligent systems, such as expert, rule-based,
and case-based reasoning systems, there has not been much work for probabilistic and decision-
theoretic systems. The main reason behind this discrepancy is the difference in processes through
which they arrive at their conclusions. For probabilistic and decision-theoretic systems, there are
well-known axioms of probability and theorems from utility theory that are applied to perform in-
ference or compute a policy. Therefore, experts do not need to examine the reasoning trace to
determine if the inference or policy computation process is correct. The trace would essentially re-
fer to concepts such as Bayes’ theorem, or the principle of maximum expected utility etc, which do
not need to be verified. Instead, the input, i.e., transition and reward function, need to be verified.
With recent advances in scalability and the subsequent application of MDPs to real-world problems,
now explanation capabilities are needed. The explanation should highlight portions of the input that
lead to a particular result.

Real-world MDPs are difficult to design because they can involve millions of states. There are
no existing tools for experts to examine and/or debug their models. The current design process
involves successive iterations of tweaking various parameters to achieve a desirable output. At the
end, the experts still cannot verify if the policy indeed accurately reflects their requirements. Our
explanations provide hints to experts in debugging by indicating the components of the model that
are being utilized in the decision-making process at the current step. This allows experts to verify
whether the correct components are being used and focus the tweaking of the model.
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Current users have to trust an MDP policy blindly, with no explanations whatsoever regarding the
process of computing the recommendation or the confidence of the system in this recommendation.
They cannot observe which factors have been considered by the system while making the recom-
mendation. Our explanations can provide users with the information that the MDP is using to base
its recommendation. This is especially important if user preferences are not accurately encoded.

If experts or users disagree with the optimal policy, the next step would be to automatically update
the model based on interaction, i.e., update the transition and reward functions if the user/expert
disagree with the optimal policy despite the explanation. Any such automatic update of the model
needs to be preceded by a proper understanding of the existing model, which can only be achieved
through explanations, such as those provided by our system.

Just like the optimal policies for MDPs from different domains can be computed using the same
underlying techniques, our technique to generate explanations is also generic and can be employed
for an MDP from any domain. We have used the same approach described here to generate minimal
sufficient explanations for the handwashing MDP [6]. The mechanism to present the explanation to
users can then be tailored for various domains. Often a fancier graphical presentation may be more
useful than a text-based template. Our focus is to produce generic explanations that can then be
transformed for presentation in a user-friendly format.

7 Conclusion

We presented a mechanism to generate explanations for factored MDP in any domain without re-
quiring any additional effort from the MDP designer. We introduced the concept of a minimal
sufficient explanation through which an action can be explained using the fewest possible templates.
We showed that our explanations can be generated in near-real time and conducted a user study to
evaluate their effectiveness. The students appreciated the extra information provided by our generic
explanations. Most of the students considered the combination of our explanation with the advisor
explanation more effective than either one alone.

In the future, it would be interesting to extend this work to partially observable MDPs. Since the
states are not directly observable, it is not obvious how one could generate an explanation that refers
to the frequency with which some states are visited. It would also be interesting to extend this work
to reinforcement learning problems where the parameters of the model (i.e., transition probabilities
and reward function) are unknown or at best partially known. Finally, when an explanation is pro-
vided and the user insists that the recommended action is suboptimal, then it would be interesting to
close the loop by updating the model to take into account the feedback provided by the user.
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Abstract

Systems supporting decision making became almost inevitable in the modern
complex world. Their efficiency depends on the sophisticated interfaces enabling
a user take advantage of the support while respecting the increasing on-line infor-
mation and incomplete, dynamically changing user’s preferences. The best deci-
sion making support is useless without the proper preference elicitation. The paper
proposes a methodology supporting automatic learning of quantitative description
of preferences. The proposed elicitation serves to fully probabilistic design, which
is an extension of Bayesian decision making.

1 Introduction

A feasible and effective solution of preference elicitation problem decides on the efficiency of any
intelligent system supporting decision making. Indeed, to recommend a participant1 an optimal se-
quence of optimal decisions requires knowing some information about what the participant (affected
by the recommended decision, if accepted) considers as “optimal”. Extracting the information about
the participant’s preferences or utility is known as preference elicitation or utility elicitation2. This
vital problem has been repeatedly addressed within artificial intelligence, game theory, operation
research and many sophisticated approaches have been proposed [7], [8], [6], [5]. A number of
approaches has arisen in connection with applied sciences like economy, social science, clinical
decision making, transportation, see, for instance, [18], [9]. To ensure feasibility and practical ap-
plicability, many decision support systems have been designed under various assumptions on the
structure of preferences. In particular, a broadly accepted additive independence [16] of values of
individual attributes is not generally valid. In many applications the preferences of attributes are
mostly dependent and the assumption above significantly worsens the elicitation results3.

To benefit from any decision support, the preferences should be known in the form allowing their
processing by an intended decision support system. Unless the participant’s preferences are com-
pletely provided by the participant, they should be learned from either past data or domain-specific

1Participant is also known as user, decision maker, agent.
2The term utility generally has a bit different coverage within decision-making context.
3The assumption can be weakened by a introducing a conditional preferential independence, [4].
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information (technological knowledge, physical laws, etc.). Eliciting the needed information itself is
inherently hard task, which success depends on experience and skills of an elicitation expert. Prefer-
ences can be elicited from past data directly collected on the underlying decision-making process or
from indirect data learned from a number of similar situations. Despite acquiring the probabilistic
information from data is well-elaborated, learning can be hard, especially when the space of possible
behaviour is larger than that past data cover. Then the initial preferences for the remaining part of
the behaviour should be properly assigned.

The process of eliciting of the domain-specific information is difficult, time-consuming and error-
prone task4. Domain experts provide subjective opinions, typically expressed in different and incom-
patible forms. The elicitation expert should elaborate these opinions into a distribution describing
preferences in a consistent way. Significant difficulties emerge when competitive/complementing
opinions with respect to the same collection of attributes should be merged. A proper merging their
individual opinions within a high-dimensional space of possible behaviour is unfeasible. Besides
domain experts having domain-specific information are often unable to provide their opinion on a
part of behaviour due to either limited knowledge of the phenomenon behind or the indifference
towards the possible instances of behaviour. Then, similarly to the learning preferences from past
data, the optimal strategy heavily depends on the initial preferences assigned to the part of behaviour
not “covered” by the domain-specific information.

Process of eliciting information itself requires significant cognitive and computational effort of the
elicitation expert. Even if we neglect the cost of this effort5, the elicitation result is always very
limited by the expert’s imperfection, i.e. his inability to devote an infinite deliberation effort to
eliciting. Unlike imperfection of experts providing domain-specific information, imperfection of
elicitation experts can be eliminated. This motivate the search for a feasible automated support of
preference elicitation, that does not rely on any elicitation expert.

The dynamic decision making strengthes the dependence on the preference elicitation. Indeed, the
participant acting within a dynamically changing environment with evolving parameters may grad-
ually change preferences. The intended change may depend on the future behaviour. The overall
task is going harder when participant interacts with other dynamic imperfect participants within a
common environment.

The paper concerns a construction of probabilistic description of preferences based on the informa-
tion available. Dynamic decision making under uncertainty from the perspective of an imperfect
participant is considered. The participant solves DM task with respect to its environment and based
on a given finite set of opinions gained from providers of domain expertise or learned from the past
data or both. The set indirectly represents the preferences in a non-unique way6. Additionally, the
participant may be still uncertain about the preferences on a non-empty subset of behaviour. To de-
sign an optimal strategy, a participant employs Fully Probabilistic Design (FPD) of DM strategies,
[10, 12] whose specification relies on the notion of an ideal closed-loop model which is essentially
a probabilistic description of the preferences. In other words, an ideal closed-loop model describes
the closed-loop behaviour, when the participant’s DM strategy is optimal. FPD searches for the op-
timal strategy by minimising the divergence of the current closed-loop description on the ideal one.
Adopted FPD implies availability of probabilistic description of the environment and probabilistic
description of the past closed-loop data.

Section 2 specifies assumptions under which the automated preference elicitation is proposed within
the considered FPD. Section 3 describes construction of the ideal closed-loop distribution based on
the information provided. The proposed solution is discussed in Section 4 followed by the conclud-
ing remarks in Section 5.

4It should be mentioned that practical solutions mostly use a laborious and unreliable process of manual
tuning a number of parameters of the pre-selected utility function. Sometimes the high number of parameters
makes this solution unfeasible. Then there are attempts to decrease the number of parameters to reach an
acceptable feasibility level.

5This effort is usually very high and many sophisticated approaches aim at optimising a trade-off between
elicitation cost and value of information it provides (often decision quality is considered), see for instance [3].

6Even, when we identify instances of behaviour that cannot be distinguished from the preferences’ view-
point.
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2 Assumptions

The considered participant deals with a DM problem, where the reached decision quality is ex-
pressed in terms of a `a-tuple of attributes a = (a1, . . . , a`a) ∈ aaa =

∏∏∏`a
i=1aaai, `a < ∞.

∏∏∏
denotes

Cartesian product of sets aaai the respective attribute entries belong to. The occurrence of attributes
depends on an optional `d-dimensional decision d = (d1, . . . , d`d) ∈ ddd =

∏∏∏`d
j=1dddj , `d <∞. In the

considered preference elicitation problem, the following assumptions are adopted.

A1 The participant is able to specify its preferences on the respective entries of attributes ai ∈ aaai
such that the most preferred value of each attribute is uniquely defined. For convenience,
let the best attribute value be zero.

A2 The participant has at disposal a probabilistic modelM(a|d), which is the probability density
(pd7) of the attributes a conditioned on decisions d. The support ofM(a|d) is assumed to
include (aaa,ddd).

A3 The participant has8 a joint pd P(a, d), describing behaviour (a, d) of the closed loop formed
by the acting participant and by its environment9. The support of P(a, d) is assumed to
include (aaa,ddd).

A4 The participant uses fully probabilistic design (FPD), [12], of decision-making strategies. FPD
considers a specification of the ideal pd I(a, d) assigning high values to desired pairs
(a, d) ∈ (aaa,ddd) and small values to undesired ones. The optimal randomised strategy
Sopt(d) is selected among strategy-describing pds S ∈ SSS as a minimiser of the Kullback-
Leibler divergence (KLD, [17])

Sopt ∈ Argmin
SSS

∫
(aaa,ddd)

M(a|d)S(d) ln
(
M(a|d)S(d)
I(a, d)

)
d(a, d) = Argmin

SSS
D(MS||I).

Note that the use of FPD represents no constraints as for a classical preference-quantifying utility
U(a, d) : (aaa,uuu)→ [−∞,∞) it suffices to consider the ideal pd of the form

I(a, d) = M(a|d) exp(U(a, d)/λ)∫
(aaa,ddd)
M(a|d) exp(U(a, d)/λ) d(a, d)

, λ > 0.

Then, the FPD with such an ideal pd and λ→ 0 arbitrarily well approximates the standard Bayesian
maximisation of the expected utility [15].

3 Preference Elicitation

Under the assumptions A1 – A4, the addressed elicitation problem reduces to a justified, algorithmic
(elicitation-expert independent) construction of the ideal pd I(a, d).
The following steps constitute the considered construction of the preference-expressing ideal.

S1 Each ideal pd I(a, d) determines marginal pds Ii(ai) on the respective attribute entries ai ∈ aiaiai,
i = 1, . . . , `a. The marginal ideal pd Ii(ai) respects the highest preference for ai = 0 if

Ii(ai = 0) ≥ Ii(ai), ∀ai ∈ aaai. (1)

Thus, the ideal pds meeting (1) for i = 1, . . . , `a respect the participant’s preferences.
S2 A realistic ideal pds (meeting (1)) should admit a complete fulfilment of preferences with respect

to any individual attribute entry ai whenever the design focuses solely on it. It is reasonable
to restrict ourselves to such ideal pds as the ideal pd, which cannot be reached at least with
respect to individual attributes is unrealistic.

7pd, Radon-Nikodým derivative [21] of the corresponding probabilistic measure with respect to a dominat-
ing, decision-strategy independent, measure denoted d.

8or can learn it
9The closed-loop model P(a, d) can alternatively describe a usual behaviour of other participants in similar

DM tasks.
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The complete fulfilment of preferences requires an existence of decision strategy Si(d)
such that the closed-loop modelM(a|d)Si(d) has the marginal pd on ai equal to the cor-
responding marginal Ii(ai) of the considered ideal pd I(a, d).
FPD methodology is used to specify realistic marginal pds, Iri (ai), i = 1, . . . , `a.

S3 The set of ideal pds I(a, d) having given realistic marginal pds Iri (ai), i = 1, . . . , `a is non-
empty as it contains the ideal pd independently combining the expressed marginal prefer-
ences I(a, d) =

∏`a
i=1 Iri (ai). Generally, the discussed set contains many pds. Without

a specific additional information, the chosen pd should at least partially reflect behaviour
occurred in the past. Then the adequate representant of this set is the minimiser of the KLD
[22] of I(a, d) on the joint pd P(a, d). According to A3 P(a, d) describes the past closed-
loop behaviour and serves as the most uncertain (the least ambitious) ideal: in the worst
case, the ideal pd qualifies the past behaviour as the best one. The minimiser over the set of
ideal pds having marginal pds Iri (ai), i = 1, . . . , `a, is described below and provides the
final solution of the addressed elicitation problem.

The pds Iri (ai), discussed in Step S2 can be obtained as follows. Let us consider the ith entry ai.
Then `a-tuple a can be split a = (a−i, ai), where a−i contains all attributes except ai and the ideal
pd factorises [20]

I(a, d) = Ii(a−i, d|ai)Ii(ai). (2)
When solely caring about the ith attribute, any distribution of (a−i, d) can be accepted as the ideal
one. This specifies the first factor of the ideal pd (2) as ([11])

Ili(a−i, d|ai) =
M(a|d)S(d)∫

(aaa−i,ddd)
M(a|d)S(d) d(a−i, d)

. (3)

This choice, complemented by an arbitrary choice of Ii(ai) specifies an ideal pd on (aaa,ddd) and the
strategy iS(d) minimising KLD of the closed-loop model MS on it cares about the ith attribute
only. For the inspected ideal pd, the optimised KLD optimised with respect a strategy S reads

D(MS||I) =
∫
(aaa,ddd)

M(a|d)S(d) ln
(∫

ddd
M(ai|d)S(d) dd
Ii(ai)

)
d(a, d). (4)

Let us assume that there is id ∈ ddd such thatM(ai = 0| id) ≥M(ai| id), ∀ai ∈ aaai. Then, the ideal
pd I(a, d) = Ii(a−i, d|ai)Iri (ai) with

Iri (ai) =M(ai| id) (5)
meets (1) and is the realistic marginal pd in the sense described in S2. Indeed, the deterministic strat-
egy iS(d) = δ(d− id) = pd concentrated on id and ideal pd IliIri make the KLD (4)D(M iS||IliIri )
equal to zero, which is the absolute minimum.

The constraints (5) on the marginal ideal pds exhaust all information about the preferences available,
see A1 – A3. It remains to select one among multitude of such ideal pds meeting (5). The minimum
KLD (cross-entropy) principle [22] recommends to select the ideal pd, which minimises its KLD on
a pd representing the most uncertain preference description. As discussed in S3, the pd describing
the past history serves to this purpose. The following proposition explicitly specifies the minimiser
and provides the solution of the addressed preference elicitation problem.

Proposition 1 (The recommended ideal pd) The ideal pd I(a, d) describing the supplied prefer-
ences via (5) and minimising KLD D(I||P), where P describes the past history, has the form

I(a, d) = P(d|a)
`a∏
i=1

Iri (ai) (6)

=
P(d, a)∫

ddd
P(a, d) dd

`a∏
i=1

M(ai| id), with id ∈ ddd : M(ai = 0| id) ≥M(ai| id), ∀i ∈ {1, . . . , `a}.

Proof

The convex functionalD(I||P) on the convex set given by considered constraints (5) has the unique
global minimum. Thus, it suffices consider weak variations of the corresponding Lagrangian func-
tional. The pd (6) makes them equal to zero and thus it is the global minimiser searched for.

�
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4 Discussion

Many important features of the proposed solution (6) is implied by the fact that the constructed ideal
pd reflects the relationM(a|d) between attributes and decisions. Specifically,

• The marginal ideal pds (5) are not fully concentrated on the most desirable attribute value
(0), which reflects the fact that ai = 0 cannot be reached with certainty.
• A specific bd is a bad decision comparing to other od if P(a = 0| bd) << P(a = 0| od).

As the closed-loop model P(a, d) = P(a|d)P(d) is a factor in (6), the decision bd is
perceived as a bad one by the ideal pd (6) unless an unbalanced experience is faced, i.e.
unless P( bd) >> P( od). Thus, the constructed ideal distinguishes the good and bad
decisions made in past if they both occur in a balanced way.
The danger of an unbalanced occurrence of good and bad decisions can be counteracted by
modifying P(a, d) in order to stimulate exploration. It suffices to take it as a mixture of the
closed-loop model gained from observations and of an exploration-allowing “flat” pd.

• The functional form of the ideal pd is determined by the modelM(a|d): it is not created
in an ad hoc, model independent, manner unlike utilities [16].

• It is always possible to project the constructed ideal pd into a class of feasible pds by using
information criterion justified in [2, 14], if the constructed ideal pd is too complex for
numerical treatment or analysis.

• The model M(a|d) as well as the closed-loop model of the past history P(a, d) can be
learnt in a standard Bayesian way [1, 20]. Consequently, the preference description (6),
derived from them, is learned, too.

• The involved pds can quantify the joint distributions of discrete-valued as well as con-
tinuous valued attributes. This simplifies the elicitation of preferences given jointly by
categorical and numerical attributes.

• The approach can be directly extended to a dynamic DM, in which attributes and decisions
evolve in time. It suffices to apply Proposition 1 to factors of involved pds.

• The construction can be formally performed even when several best (mutually ordered) at-
tributes are admitted in a variant of Assumption A1. The subsequent evaluations following
the same construction line are, however, harder.

• The considered preference specification is quite common but it does not cover all possibil-
ities. For instance, an attribute ai ∈ aaai may have preferences specified on a proper subset
∅ 6= αααi ⊂ aaai. If ai = 0 ∈ αααi is considered as the most desirable value of the attribute, the
proposed elicitation way applies with a reduced requirementM(ai = 0| id) ≥ M(ai| id),
∀ai ∈ αααi, cf. (1). Then, the proposed procedure can be used without essential changes. The
real problem arises when there is no information whether the most preferred attribute is in∏∏∏`a

i=1αααi or not. Then, the participant has to provide an additional feedback by specifying a
rank of the newly observed attribute with respect to the initially set values 0. The problem
is tightly connected with a sequential choice of the best variant, e.g., [19].

5 Concluding Remarks

The solution proposes a methodology of automated preference elicitation of the ideal pd for a com-
mon preference specification. Covering other preference specifications is the main problems to be
addressed. Also, the proposed solution is to be connected with an alternative view presented in
[13], where the preference elicitation was directly treated as a learning problem and reduced to a
specification of a prior pd on parameters entering environment model (and thus learnable) and pa-
rameters entering only the ideal pd (and thus learnable only via a well-specified join prior pd). The
design of specific algorithmic solutions for commonly used environment models is another topic
to be covered. In spite of the width of the problems hidden behind these statements, the selected
methodological direction is conjectured to be adequate and practically promising.

Acknowledgments
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Abstract

Human decision making has demonstrated imperfectness and essential deviation
from rationality. Emotions are a primary driver of human actions and the current
study investigates how perceived emotions may affect the behavior during the Ul-
timatum Game (UG), while recording event-related potentials (ERPs) from scalp
electrodes. We observed a negative correlation (p < 0.001) between positive emo-
tions, in particular happiness, and the amount offered by a participant acting as a
Proposer in the UG. Negative emotions, in particular fear, showed a positive corre-
lation (p < 0.05) with the offer. The ERPs revealed invariant components at short
latency in brain activity in posterior parietal areas irrespective of the Responder
or Proposer role. Conversely, significant differences appeared in the activity of
central and frontal areas between the two conditions at latencies 300-500 ms.

1 Introduction

Although research has demonstrated the substantial role emotions play in decision-making and be-
havior [1] traditional economic models emphasize the importance of rational choices rather than
their emotional implications. The concept of expected value is the idea that when a rational agent
must choose between two options, it will compute the utility of outcome of both actions, estimate
their probability of occurrence and finally select the one that offers the highest gain. In the field of
neuroeconomics a few studies have analyzed brain and physiological activation during economical
monetary exchange [2, 3] revealing that activation of the insula and higher skin conductance [4]
were associated to rejecting unfair offers. The aim of the present research is to further extend the
understanding of emotions in economic decision-making by investigating the role of basic emotions

∗http://www.neuroheuristic.org
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(happiness, anger, fear, disgust, surprise, and sadness) in the decision-making process. To analyze
economic decision-making behavior we used the Ultimatum Game (UG) task [5] while recording
EEG activity. This task has been widely used to investigate human interaction, in particular the dif-
ferences between behavior expected according to the ‘rational’ model of game theory and observed
‘irrational’ behavior. One hypothesis that has been suggested to explain this divergence is that par-
ticipants tend to engage in the ‘tit-for-tat’ type of choice establishing a sort of reciprocity rule [6]. In
order to examine potential interaction effects between reciprocity rules and emotions we employed
repetitive trials to analyze the evolution of participants’ strategy along the game. In addition, we
analyzed the role of individual differences, in particular the personality characteristic of honesty
and the tendency to experience positive and negative emotions, as factors potentially affecting the
monetary choice. [7].

2 Materials and methods

2.1 Behavioral paradigm

We administered participants some questionnaire to measure their personality traits (the Hexaco per-
sonality questionnaire, [8]) as well as their tendency to experience positive and negative affect (the
PANAS scale [9]). The Ultimatum Game (UG) is an anonymous, single-shot two-player game, in
which the “Proposer” (Player 1) has a certain sum of money at his disposal and must propose a share
to the “Responder” (Player 2) [5]. The Responder can either accept or reject this offer. If the Re-
sponder accepts the proposal, the share is done accordingly. However, if the Responder refuses, both
players end up with nothing. In either case the game ends after the Responder’s decision. The Sub-
jects were comfortably seated in a sound- and light-attenuated room, watched a computer-controlled
monitor at a distance of 57 cm, and were instructed to maintain their gaze on a central fixation cross
throughout the experiment. Subjects volunteered to participate in the study and played with virtual
money. They were tested along three series, each one composed of 2 Blocks. During the first Block
the participants acted as Proposers (Fig. 1a), while during the second Block the computer made the
offer and the participants acted as Responders (Fig. 1b). Each Block was composed by 30 trials,
which means that 90 trials were collected overall for each condition. The task was implemented on
a personal computer using the E-Prime software (Psychology Software Tools, Inc., Sharpsburg, PA
15215-2821 USA).

a b

Figure 1: Illustration of Ultimatum Game task along series composed of 2 Blocks. During the first
Block the participants acted as Proposers (a), while during the second Block the computer made the
offer and the humans acted as Responders (b).

Participants were subtly primed with emotional figures while making the decision to share money
with, or accept the offer of, an hypothetical partner. Becoming aware of an emotional state may
hinder its effect on subsequent behavior. Thus, we instructed participants to make their economic
decision while keeping in the background emotional images, which were meant to induce different
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Figure 2: Active Indipendent Component Analysis-components (ICA-1 to ICA-5) between 200 ms
and 350 ms accounting for ERP variance in each of the condition tasks. The topographic distribu-
tions of ICA-components are presented on the left side of the grand average waveforms.

emotional states. The images were selected among a broad set of pictures painted by the artist
Rose Coleman. In contrast to most of the pictures used in databases of the kind of the International
Affective Picture System (IAPS) [10, 11] our data set is based on non-figurative abstract pictures.
Participants were asked to rate the emotional content of the image only at the end of the experiment.

2.2 Electrophysiological recording

Continuous EEG was recorded using 64 surface electrodes (ActiveTwo MARK II Biosemi EEG
System, BioSemi B.V., Amsterdam). Electrophysiological signals were sampled at 2048 Hz with
lower cutoff at 0.05 Hz and upper cutoff at 200 Hz (DC ampliers and software by BioSemi B.V.). The
electro-oculogram was recorded using two pairs of bipolar electrodes in both vertical and horizontal
directions. Time stamps of visual stimuli presentations and keyboard press gestures were recorded
with markers in the continuous EEG data le. The start of a trial was initiated by pressing the spacebar
at the beginning. The EEG recordings were analyzed with NeuroScan software (NeuroScan Inc,
Herndon, VA, USA) and open source softwares. ERPs were averaged with a 200 ms baseline epoch
prior to trigger onset and band-pass filtered from 0.3 Hz to 30 Hz.

3 Results

We started by analyzing data in one of the 2 experimental conditions: when the participants offered
an amount of money to share to an hypothetical partner. Overall offers were balanced around av-
erage (average= 5.03, SD= 1.34 on a scale from 1 to 9 CHF). A first analysis conducted across
subjects (IBM-SPSS version 19, Chicago, IL, USA) revealed a negative correlation between the
emotional content of the figure in the background, in particular related to happiness, and the amount
that was offered, r(630) = .14, p < 0.001. Positive correlations were found with emotions such
as fear, r(630) = .12, p < 0.05 and sadness, r(630) = .09, p < 0.05. To further explore this
relationship we created two clusters of emotional contents of the figures employed in the back-
ground, one indicating high content of positive emotions, such as surprise and happiness, and the
other with high content of negative emotions, such as disgust, fear and sadness. Then we conducted

3



a 1-way ANOVA in which emotional content (positive and negative) was used to predict the amount
of money offered. Preliminary results revealed that indeed positive content predicted a lower offer
than negative content, F (2, 629) = 10.42, p < 0.001.

In the electrophysiological recordings we observed significant differences in the latencies of the
P200 peak, with human Responders’ peak occurring 30-50 ms later than the peak elicited in Pro-
posers. The N400 latency was similar for central and frontal areas but it was about 100 ms longer
than the N400 latency observed in Pz. This wave is likely to be associated with information pro-
cessing and response preparation, especially in the central and frontal areas. Figure 2 shows that
Independent Component Analysis (ICA, [12]) revealed ICA-components ICA-1 and ICA-5 associ-
ated to the previously described P200 and N400 components of each experimental condition. The
ICA-1 component accounted for the same percentage of variance in Proposer and Responder condi-
tions (17% and 11%, respectively; Fig. 2a,d). Differences between the conditions appeared for the
ICA-5 component, which explained 22% of the variance for Proposer and only 7% for the Responder
condition (Fig. 2c,f). ICA-2, ICA-3 and ICA-4 explained 15%, 17% and 34%, respectively, of the
variance in Proposer condition. On the opposite only two components ICA-2 and ICA-3 explained
9% and 18%, respectively, of the variance in the Responders.

4 Discussion

We presented here only preliminary results on the effect of emotions on Proposer’s decision mak-
ing. Data from the other experimental condition, namely when the participant decided to accept or
refuse an offer, will allow us to investigate whether the same emotional content may produce similar
or different effects on economic decision-making. In particular, the analysis we plan to conduct
will focus on the relationship among monetary decision, indirect measures of emotions with EEG,
and subjective evaluation of the emotional images shown during decision making. Finally we plan
to analyze whether emotional state will mediate the relationship between certain personality char-
acteristics, such as greed avoidance, and certain decision outcomes, such as higher sharing offers.
The combined psychological and neurophysiological approach will allow us to produce a model
of the most likely neurological circuit suitable to be influenced by affective choices. Our results
will provide additional evidence to the role emotions and individual differences play in economic
decision-making.
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Abstract

We introduce a model that describes the decision making process of an au-
tonomous synthetic agent which interacts with another agent and is influenced
by affective mechanisms. This model would reproduce patterns similar to humans
and regulate the behavior of agents providing them with some kind of emotional
intelligence and improving interaction experience. We sketch the implementation
of our model with an edutainment robot.

1 Introduction

We have recently introduced in [19] the framework of Adversarial Risk Analysis (ARA) to cope with
risk analysis of situations in which risks stem from deliberate actions of intelligent adversaries. ARA
has a Bayesian game theoretic flavor, as in [11] and [17]. In supporting one of the participants, the
problem is viewed as a decision analytic one, but principled procedures which employ the adversarial
structure, and other information available, are used to assess the probabilities on the opponents’
actions. There is a potentially infinite analysis of nested decision models arrived at when using
ARA. This is in the realm of incomplete Bayesian games, see [8], which avoids the infinite regress
by using the common (prior) knowledge assumption. We feel that this is a very strong hypothesis
which is not tenable in our application domain. We prefer to be realistic and accommodate as much
information as we can from intelligence into our analysis, through a structure of nested decision
models. Depending on the level we climb up in such hierarchy of nested models, we talk about
0-level analysis, 1-level analysis and so on, see [1] and the discussion [10]. [1], [18] and [19] have
introduced different principles to end up the hierarchy. In this paper, we shall explore how the ARA
framework may support the decision making of an autonomous emotional agent in its interaction
with a user.

Over the last several years, researchers in the field of cognitive processes have shown that emotions
have a direct impact on judgment and decision-making tasks. This has vertebrated fields such as
affective computing [16], affective decision making ([13] and [4]) and neuroeconomics [6]. Based
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on some of their concepts, we develop a model that allows an agent to make decisions influenced by
emotional factors within the ARA framework.

The model is essentially multi-attribute decision analytic, see [3], but our agent entertains also mod-
els forecasting the evolution of its adversary and the environment surrounding them. We also include
models simulating emotions, which have an impact over the agent’s utility function. In such a way,
we aim at better simulating human decision making and, specially, improving interfacing and inter-
action with users.

2 Basic Elements

We start by introducing the basic elements of our model. We aim at designing an agent A whose
activities we want to regulate and plan. There is another participantB, the user, which interacts with
A. The activities of both A and B take place within an environment E. As a motivating example,
suppose that we aim at designing a bot A which will interact with a kid B within a given room E.

A makes decisions within a finite set A = {a1, . . . , am}, which possibly includes a do nothing
action. B makes decisions within a set B = {b1, . . . , bn}, which also includes a do nothing action.
B will be as complete as possible, while simplifying all feasible results down to a finite number. It
may be the case that not all user actions will be known a priori. This set could grow as the agent
learns, adding new user actions, as we discuss in our conclusions. The environment E changes with
the user actions. The agent faces this changing environment, which affects its own behavior. We
assume that the environment adopts a state within a finite set E = {e1, . . . , er}.
A has q sensors which provide readings and are the window through which it perceives the world.
Sensory information originating in the external environment plays an important role in the intensity
of the agent’s emotions, which, in turn, affect its decision-making process. Each sensor reading is
attached to a time t, so that the sensor reading vector will be st = (s1t , . . . , s

q
t ). The agent infers the

external environmental state e, based on a transformation a function f , so that

êt = f(st).

A also uses the sensor readings to infer what the user has done, based on a (possibly probabilistic)
function g

b̂t = g(st).

We design our agent with an embedded management by exception principle, see [23]. Under normal
circumstances, its activities will be planned according to the basic loop shown in Figure 1. This is
open to interventions if an exception occurs.

Infer
action bt

Interpret
state et

Read
sensors st

Update the
forecasting

model

Choose
next action
at+1

Update
clock

Figure 1: Basic Agent Loop

3 ARA Affective Decision Model

Essentially, we shall plan our agent’s activities over time within the decision analytic framework,
see [3]. We describe, in turn, the forecasting model (which incorporates the ARA elements), the
preference model (which incorporates the affective elements) and the optimization part.
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3.1 Forecasting Models

The agent maintains forecasting models which suggest him with which probabilities will the user act
and the environment react, given the past history of its actions, the user’s actions and the evolution
of the environment. We describe the general structure of such models.

Assume that, for computational reasons, we limit the agent’s memory to two instant times, so that
we are interested in computing

p(et, bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)).

Extensions to k instants of memory or forecasting m steps ahead follow a similar path. The above
may be decomposed through

p(et|bt, at, (et−1, at−1, bt−1), (et−2, at−2, bt−2))× p(bt|at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)).

We assume that the environment is fully under the control of the user. As an example, the user
controls the light, the temperature and other features of the room. Moreover, he may plug in the bot
to charge its battery, and so on. Only the latest action of the user will affect the evolution of the
environment. Thus, we shall assume that

p(et | bt, at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) = p(et | bt, et−1, et−2).

We term this the environment model.

Similarly, we shall assume that the user has its own behavior evolution, that might be affected by
how does he react to the agent actions, thus incorporating the ARA principle, so that

p(bt | at, (et−1, at−1, bt−1), (et−2, at−2, bt−2)) = p(bt | at, bt−1, bt−2). (1)

The agent will maintain two models for such purpose. The first one describes the evolution of the
user by itself, assuming that he is in control of the whole environment, and he is not affected by the
agent’s actions. We call it the user model, and is described through

p(bt | bt−1, bt−2).

The other one refers to the user’s reactions to the agent’s actions. Indeed, that the user is fully
reactive to the agent, which we describe through

p(bt | at).

We call it the classical conditioning model, with the agent conditioning the user.

We combine both models to recover (1). For example, under appropriate independence conditions
we recover it through

p(bt | at, bt−1, bt−2) = (p(bt | bt−1, bt−2) p(bt | at))/p(bt).

Other combinations are required if such conditions do not hold. In general, we could view the
problem as one of model averaging, see [9]. In such case

p(bt | at, bt−1, bt−2) = p(M1)p(bt | bt−1, bt−2) + p(M2)p(bt | at),

where p(Mi) denotes the probability that the agent gives to model i, which, essentially, capture
how much reactive to the agent’s actions the user is. Learning about various models within our
implementation is sketched in Section 4.

3.2 Affective Preference Model

We describe now the preference model, which incorporates the affective principles. We shall assume
that the agent faces multiple consequences c = (c1, c2, . . . , cl). At each instant t, such consequences
depend on his action at, the user’s action bt and the future state et, realized after at and bt. Therefore,
the consequences will be of the form

ci(at, bt, et), i = 1, . . . , l.

3



We assume that they are evaluated through a multi-attribute utility function, see [3]. Specifically,
without much loss of generality, see [24], we shall adopt an additive form

u(c1, c2, . . . , cl) =

l∑
i=1

wiui(ci),

with wi ≥ 0,
∑l

i=1 wi = 1.

The consequences might be perceived differently depending on the current emotional state dt of the
agent. We shall define it in terms of the level of k basic emotions, through a mixing function

dt = h(em1
t , em

2
t , . . . , em

k
t ).

[5] and [22] provide many pointers to the literature on mixing emotions. The intensity of these basic
emotions, in turn, will be defined in terms of how desirable a situation is, i.e. how much utility
u(ct) is gained, and how surprising the situation was, see [7] for an assessment of such models. The
expectations, or surprise, will be defined by comparing the predicted and the actual (inferred) user
action through some distance function

zt = d(b̄t, b̂t),

where b̄t is (the most likely) predicted user action. We assume some stability within emotions, in that
current emotions influence future emotions. Thus, we assume a probabilistic evolution of emotions
through

emi
t = ri(em

i
t−1, u(ct), zt).

Finally, following [13], we shall actually assume that the utility weights will depend on the emotional
state, the stock of visceral factors in their notation, so that

u(c) =

l∑
i=1

wi(d)ui(ci).

3.3 Expected Utility

The goal of our agent will be to maximize the predictive expected utility. Planning m instants ahead
requires computing maximum expected utility plans defined through:

max
(at,...,at+m)

ψ(at, . . . , at+m) =
∑

(bt,et)...,(bt+m,et+m)

[
m∑
i=1

(u(at+i, bt+i, et+i))

]
×

×p((bt, et), . . . , (bt+m, et+m) | (at, at+1, . . . , at+m, (at−1, bt−1, et−1), (at−2, bt−2, et−2))).

assuming utilities to be additive over time. This could be done through dynamic programming. If
planning m instants ahead turns out to be very expensive computationally, we could plan just one
period ahead. In this case, we aim at solving

max
at∈A

ψ(at) =
∑
bt,et

u(at, bt, et)× p(bt, et | at, (at−1, bt−1, et−1), (at−2, bt−2, et−2)).

We may mitigate the myopia of this approach by adding a term penalizing deviations from some
ideal agent consequences, as in [21]. In this case, the utility would have the form u(c) − ρ(c, c∗)
where ρ is a distance and c∗ is an ideal consequence value.

Agents operating in this way may end up being too predictable. We may mitigate such effect by
choosing the next action in a randomized way, with probabilities proportional to the predictive ex-
pected utilities, that is

P (at) ∝ ψ(at), (2)

where P (at) is the probability of choosing at.
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4 Implementation

The above procedures have been implemented within the AISoy1 robot environment
(http://www.aisoy.es). Some of the details of the model implemented are described next, with code
developed in C++ over Linux.

The set A includes the robot’s actions which include cry, tell a joke, ask for being recharged, com-
plain, talk, sing, argue, ask for playing, ask for help and do nothing. On the user’s side, set B, the
robot is able to detect several agent’s actions, some of them in a probabilistic way. Among them,
the robot detects hug, hit, shout, speak, being recharged, play, being touched, stroke or no action.
Regarding the environment (set E), the bot may recognize contextual issues concerning the presence
of noise or music, the level of darkness, the temperature, or its inclination. To do so, the bot has
several sensors including a camera to detect objects or persons within a scene, as well as the light
intensity; a microphone used to recognize when the user talks and understand what he says, through
a natural language processing component; some touch sensors, to interpret when it has been touched
or hugged or hit; an inclination sensor so as to know when it is lying down or not; and a temperature
sensor. The information provided by these sensors is used by the bot to infer the user’s actions and
environmental states. Some are based on simple deterministic rules; for example, the hit action is
interpreted through a detection in a touch sensor and a variation in the inclination sensor. Others are
based on probabilistic rules, like those involving voice recognition and processing.

The basic forecasting models (environment, user, classical conditioning) are Markov chains and we
learn about their transition probabilities based on matrix beta models, see [20]. For expected utility
computations and point forecasts we summarize the corresponding row-wise Dirichlet distributions
through their means. Learning about probability models is done through Bayesian model averaging,
as in [9].

The bot aims at satisfying four objectives, which, as in [14], are ordered in hierarchical order of
importance. They go from a primary security objective, in which the bot cares mainly for its sur-
vival and security (in terms of not being hit, having a sufficient energy level, and being at the right
temperature), to higher objective levels in relation with a social empathy layer, once basic objectives
are sufficiently covered, in relation with social interests of the bot. Weights reflect the importance
of the objectives and component utility functions reflect the aim of fulfilling as quickly as possible
the primary objectives, up to a certain level. Emotion implementations are based on [7], who com-
pare different appraisal models to obtain the intensity of an emotion. We use four basic emotions
(joy, sadness, hope and fear), which are then combined to obtain more complex emotions. Emotions
evolve as Dynamic Linear Models, as in [23].

The model is implemented in a synchronous mode. Sensors are read at fixed times (with different
timings for various sensors). When relevant events are detected, the basic information processing
and decision making loop is shot. However, as mentioned it is managed by exception in that if
exceptions to standard behavior occur, the loop is open to interventions through various threads.
We plan only one step ahead and choose the action with probabilities proportional to the computed
expected utilities. Memory is limited to the two previous instants.

5 Discussion

We have described a model to control the behavior of an agent in front of an intelligent adversary. It
is multi-attribute decision analytic at its core, but it incorporates forecasting models of the adversary
(Adversarial Risk Analysis) and emotion-based behavior (Affective Decision Making). This was
motivated by our interest in improving the user’s experience interacting with a bot [2], [12] and
[15]. We believe though that this model may find many other potential applications in fields like
interface design, e-learning, entertainment or therapeutical devices.

The model should be extended to a case in which the agent interacts with several users, through
a process of identification. It could also be extended to a case in which there are several agents,
possibly cooperating or competing, depending on their emotional state. Dealing with the possibility
of learning about new user actions, based on repeated readings, and, consequently, augmenting the
set B is another challenging problem. Finally, we have shown what is termed a 0-level ARA analysis.
We could try to undertake higher ARA levels in modeling the performance of adversaries.
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Abstract

When individuals are learning about an environment and other decision-makers
in that environment, a statistically sensible thing to do is form posterior distri-
butions over unknown quantities of interest (such as features of the environment
and ’opponent’ strategy) then select an action by integrating with respect to these
posterior distributions. However reasoning with such distributions is very trouble-
some, even in a machine learning context with extensive computational resources;
Savage himself indicated that Bayesian decision theory is only sensibly used in
reasonably ”small” situations.
Random beliefs is a framework in which individuals instead respond to a single
sample from a posterior distribution. There is evidence from the psychological
and animal behaviour disciplines to suggest that both humans and animals may
use such a strategy. In our work we demonstrate such behaviour ’solves’ the
exploration-exploitation dilemma ’better’ than other provably convergent strate-
gies. We can also show that such behaviour results in convergence to a Nash
equilibrium of an unknown game.
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Abstract

Classifier combination methods need to make best use of the outputs of multiple,
imperfect classifiers to enable higher accuracy classifications. In many situations,
such as when human decisions need to be combined, the base decisions can vary
enormously in reliability. A Bayesian approach to such uncertain combination
allows us to infer the differences in performance between individuals and to in-
corporate any available prior knowledge about their abilities when training data is
sparse. In this paper we explore Bayesian classifier combination, using the com-
putationally efficient framework of variational Bayesian inference. We apply the
approach to real data from a large citizen science project, Galaxy Zoo Supernovae,
and show that our method far outperforms other established approaches to imper-
fect decision combination. We go on to analyse the putative community structure
of the decision makers, based on their inferred decision making strategies, and
show that natural groupings are formed.

1 Introduction

In many real-world scenarios we are faced with the need to aggregate information from cohorts of
imperfect decision making agents (base classifiers), be they computational or human. Particularly in
the case of human agents, we rarely have available to us an indication of how decisions were arrived
at or a realistic measure of agent confidence in the various decisions. Fusing multiple sources of
information in the presence of uncertainty is optimally achieved using Bayesian inference, which
elegantly provides a principled mathematical framework for such knowledge aggregation. In this
paper we provide a Bayesian framework for such imperfect decision combination, where the base
classifications we receive are greedy preferences (i.e. labels with no indication of confidence or
uncertainty). The classifier combination method we develop aggregates the decisions of multiple
agents, improving overall performance. We present a principled framework in which the use of
weak decision makers can be mitagated and in which multiple agents, with very different obser-
vations, knowledge or training sets, can be combined to provide complementary information. The
preliminary application we focus on in this paper is a distributed citizen science project, in which
human agents carry out classification tasks, in this case identifying transient objects from images
as corresponding to potential supernovae or not. This application, Galaxy Zoo Supernovae [1], is
part of the highly successful Zooniverse family of citizen science projects. In this application the
ability of our base classifiers can be very varied and there is no guarantee over any individual’s per-
formance, as each user can have radically different levels of domain experience and have different
background knowledge. As individual users are not overloaded with decision requests by the sys-
tem, we often have little performance data for individual users (base classifiers). The methodology
we advocate provides a scaleable, computationally efficient, Bayesian approach to learning base
classifier performance thus enabling optimal decision combinations. The approach is robust in the
presence of uncertainties at all levels and naturally handles missing observations, i.e. in cases where
agents do not provide any base classifications.
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1.1 Independent Bayesian Classifier Combination

Here we present a variant of Independent Bayesian Classifier Combination (IBCC), originally de-
fined in [2]. The model assumes conditional independence between base classifiers, but performed
as well as more computationally intense dependency modelling methods [2]. For the ith data
point, we assume that the true label ti is generated from a multinomial distribution with proba-
bility κ : p(ti = j|κ) = κj . We assume that observed classifier outputs, c, are discrete and are
generated from a multinomial distribution dependent on the class of the true label, with parameters
π: p(c(k)i |ti = j,π) = π

(k)

jc
(k)
i

. Thus there are minimal requirements on the type of base clas-

sifier output, which need not be probabilistic and could be selected from an arbitrary number of
discrete values, indicating, for example, greedy preference over a set of class labels. The parame-
ters π and κ have Dirichlet prior distributions with hyper-parameters α(k)

j = [α
(k)
0j,1, ..., α

(k)
0j,L] and

ν = [ν01, ...ν0J ] respectively, where L is the number of possible outputs from classifier k and J is
the number of classes. The joint distribution over all variables is

p(κ, π, t,c|α,ν) =

N∏
i=1

{κti
K∏

k=1

π
ti,c

(k)
i
}p(κ|v)p(π|α). (1)

The graphical model for IBCC is shown in figure 1.

Figure 1: Graphical Model for IBCC. Shaded nodes are observed values, circular nodes are variables
with a distribution and square nodes are variables instantiated with point values.

A key feature of IBCC is that π represents a confusion matrix that quantifies the decision-making
abilities of each base classifier. This potentially allows us to ignore, or retrain, poorer classifiers
and assign experts decision makers to data points that are highly uncertain. Such efficient selection
of base classifiers is vitally important when obtaining a classification that has a cost related to the
number of decision makers, for example. The IBCC model also allows us to infer values for missing
observations of classifier outputs, c, so that we can naturally handle cases in which only partially
observed agents make decisions.

The IBCC model assumes independence between the rows in π, i.e. the probability of each classi-
fier’s outputs is dependent on the true label class. In some cases it may be reasonable to assume that
performance over one label class may be correlated with performance in another; indeed methods
such as weighted majority [3] make this tacit assumption. However, we would argue that this is not
universally the case, and IBCC makes no such strong assumptions.

The goal of the combination model is to perform inference for the unknown variables t, π, and κ.
The inference technique proposed in [2] was Gibbs Sampling. While this provides some theoretical
guarantee of accuracy given the proposed model, it is often very slow to converge and convergence
is difficult to ascertain. In this paper we consider the use of a principled approximate Bayesian meth-
ods, namely variational Bayes (VB) [4] as this allows us to replace non-analytic marginal integrals
in the original model with analytic updates in the sufficient statistics of the variational approxima-
tion. This produces a model that iterates rapidly to a solution in a computational framework which
can be seen as a Bayesian generalisation of the Expectation-Maximization EM algorithm.

In [2] an exponential prior distribution is placed overα0. However, exponentials are not conjugate to
the Dirichlet, and the conjugate prior to the Dirichlet is non-standard and its normalisation constant
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is not in closed form [5], requiring the use of an expensive adaptive rejection Gibbs sampling step
for α and making even the variational Bayesian solution intractable. We therefore alter the model,
so as to using point values for α0, as are used in other VB models [6, 7, 8]. The hyper-parameter
values of α0 can hence be chosen to represent any prior level of uncertainty in the values of the
agent-by-agent confusion matrices, π, and can be regarded as pseudo-counts of prior observations,
offering a natural method to include any prior knowledge and a methodology to extend the method
to sequential, on-line environments.

1.2 Variational Bayes

Given a set of observed data X and a set of latent variables and parameters Z, the goal of varia-
tional Bayes (VB) is to find a tractable approximation q(Z) to the posterior distribution p(Z|X) by
minimising the KL-divergence between the approximate distribution and the true distribution. We
can write the log of the model evidence p(X) as

ln p(X) =

ˆ
q(Z) ln

p(X,Z)

q(Z)
dZ −

ˆ
q(Z) ln

p(Z|X)

q(Z)
dZ (2)

= L(q)− KL(q||p). (3)

As q(Z) approaches p(Z|X), the KL-divergence disappears and the lower bound L(q) is max-
imised. Variational Bayes selects a restricted form of q(Z) that is tractable to work with, then seeks
the distribution within this restricted form that minimises the KL-divergence. A common restric-
tion is to assume q(Z) factorises into single variable factors q(Z) =

∏M
i=1 qi(Zi). For each factor

qi(Zi) we then seek the optimal solution q∗i (Zi) that minimises the KL-divergence. Mean field
theory [9] then shows that the log of each optimal factor ln q∗i (Zi) is the expectation with respect to
all other factors of the log of the joint distribution over all hidden and known variables:

ln q∗i (Zi) = Ei 6=j [ln p(X,Z)] + const. (4)

We can evaluate these optimal factors iteratively by first initialising all factors, then updating each
in turn using the expectations with respect to the current values of the other factors. Unlike Gibbs
sampling, the each iteration is guaranteed to increase the lower bound on the log-likelihood, L(q),
converging to a (local) maximum in a similar fashion to standard EM algorithms. If the factors
q∗i (Zi) are exponential family distributions, as is the case for the IBCC method we present in the
next section, the lower bound is convex with respect to each factor q∗i (Zi) and L(q) will converge
to a global maximum of our approximate, factorised distribution. In practice, once the optimal
factors q∗i (Zi) have converged to within a given tolerance, we can approximate the distribution of
the unknown variables and calculate their expected values.

2 Variational Bayesian IBCC

To provide a variational Bayesian treatment of IBCC, VB-IBCC, we first propose the form for our
variational distribution (q(Z) in the previous section) that factorises between the parameters and
latent variables.

q(κ, t,π) = q(t)q(κ,π) (5)

This is the only assumption we must make to perform VB on this model; the forms of the factors
arise from our model of IBCC. We can use the joint distribution in equation 1 to find the optimal
factors q∗(t) and q∗(κ,π) it in the form given by equation 4. For the target labels we have

ln q∗(t) = Eκ,π[ln p(κ, t,π, c)] + const. (6)

We rewrite this into factors corresponding to independent data points, with any terms not involving
ti being absorbed into the normalisation constant.

ln q∗(ti) = Eκ[lnκti ] +

K∑
k=1

Eπ[lnπ
(k)

ti,c
(k)
i

] + const (7)

3



To simplify the optimal factors in subsequent equations, we define expectations with respect to t of
two statistics: the number of occurrences of each target class is given by

Nj =

N∑
i=1

Et[ti = j] =

N∑
i=1

q∗(ti = j) (8)

and the counts of each classifier decision, c(k)i = l, given the target label, ti = j, given by

N
(k)
jl =

N∑
i=1

[c
(k)
i = l]Et[ti = j] =

N∑
i=1

[c
(k)
i = l]q∗(ti = j). (9)

where [c
(k)
i = l] is unity if c(k)i = l and zero otherwise.

For the parameters of the model we have the optimal factors given by:

ln q∗(κ, π) = Et[ln p(κ, t, π,c)] + const (10)

= Et[
N∑
i=1

{ln pti +

K∑
k=1

lnπ
(k)

ti,c
(k)
i

}] + ln p(κ|v0) (11)

+ ln p(π|α) + const. (12)

In equation 10 terms involving κ and terms involving each confusion matrix in π are separate, so
we can factorise q∗(κ, π) further into

q∗(κ,π) = q∗(κ)

K∏
k=1

J∏
j=1

q∗(π
(k)
j ). (13)

Considering the prior for κ is a Dirichlet distribution, we obtain the optimal factor

ln q∗(κ) = Et[
N∑
i=1

lnκti ] + ln p(κ|v) + const (14)

=

J∑
j=1

Nj lnκj +

J∑
j=1

(ν0,j − 1) lnκj + const. (15)

Taking the exponential of both sides, we obtain a posterior Dirichlet distribution of the form

q∗(κ) ∝ Dir(κ|ν1, ...,νJ) (16)

where ν is updated in the standard manner by adding the data counts to the prior counts ν0:

νj = ν0,j +Nj . (17)

The expectation of lnκ required to update equation 7 is therefore:

E[lnκj ] = Ψ(νj)−Ψ(

J∑
j′=1

νj′) (18)

where Ψ(z) is the standard digamma function.

For the confusion matrices π(k)
j the priors are also Dirichlet distributions giving us the factor

ln q∗(π
(k)
j ,α

(k)
j ) =

N∑
i=1

Eti [ti = j] lnπ
(k)

j,c
(k)
i

+ ln p(π|α) + const (19)

=

L∑
l=1

N
(k)
jl lnπ

(k)
jl +

L∑
l=1

(α
(k)
jl − 1) lnπ

(k)
jl + const. (20)

Again, taking the exponential gives a posterior Dirichlet distribution of the form

q∗(π
(k)
j ) ∝ Dir(π

(k)
j |α

(k)
j1 , ..., α

(k)
jL ) (21)
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where α(k)
j is updated by adding data counts to prior counts α(k)

0,j :

α
(k)
jl = α

(k)
0,jl +N

(k)
jl . (22)

The expectation required for equation 7 is given by

E[lnπ
(k)
jl ] = Ψ(α

(k)
jl )−Ψ(

L∑
l′=1

α
(k)
jl′ ). (23)

To apply the VB algorithm to IBCC, we initialise all the expectations over E[lnπ
(k)
jl ] and E[lnκj ], ei-

ther randomly or by choosing their prior expectations (if we have domain knowledge to inform this).
We then iterate over a two-stage procedure similar to the Expectation-Maximization (EM) algo-
rithm. In the variational equivalent of the E-step we use the current expected parameters, E[lnπ

(k)
jl ]

and E[lnκj ], to update the variational distribution in equation 5. First we evaluate equation 7, then
use the result to update the counts Nj and N (k)

jl according to equations 8 and 9. In the variational

M-step, we update E[lnπ
(k)
jl ] and E[lnκj ] using equations 18 and 23.

3 Galaxy Zoo Supernovae

We tested the model using a dataset obtained from the Galaxy Zoo Supernovae citizen science
project [1]. The dataset contains scores given by individual volunteer citizen scientists (base classi-
fiers) to candidate supernova images after answering a series of questions, the aim being to classify
each data sample (images) as either “supernova” or “not supernova”. A set of three linked questions
are answered by the users, which are hard-coded in the project repository to scores of -1, 1 or 3, cor-
responding respectively to decisions that the data point is very unlikely to be a supernova, possibly
a supernova and very likely a supernova.

In order to verfiy the efficacy of our approach and competing methods, we use “true” target clas-
sifications obtained from full spectroscopic analysis, undertaken as part of the Palomar Transient
Factory collaboration [10]. We note that this information, is not available to the base classifiers (the
users), being obtained retrospectively. This labelling is not made use of in our algorithms, save for
the purpose of measuring performance. We compare IBCC using both variational Bayes (VB-IBCC)
and Gibbs sampling (Gibbs-IBCC), using as output the expected values of ti. We also tested simple
majority voting, weighted majority voting & weighted sum [3] and mean user scores, which the
Galaxy Zoo Supernovae currently uses to filter results. For majority voting methods we treat both 1
and 3 as a vote for the supernova class.

The complete dataset contains many volunteers that have provided very few classifications, partic-
ularly for positive examples, as there are 322 classifications of positive data points compared to
43941 “not supernova” examples. We therefore subsampled the dataset, selecting all positive data
points, then selecting only negative data points that have at least 10 classifications from volunteers
who have classified at least 50 examples, which produced a data set of some 1000 examples with
decisions produced from around 1700 users. We tested all imperfect decision combination methods
using five-fold cross validation.

Figure 2a shows the average Receiver-Operating Characteristic (ROC) curves taken across all cross-
validation datasets for the mean score, weighted sum and VB-IBCC. The ROC curve for VB-IBCC
clearly outperforms the mean of scores by a large margin. Weighted sum achieves a slight im-
provement on the mean by learning to discount base classifiers each time they make a mistake. The
performance of the majority voting methods and IBCC using Gibbs sampling is summarised by the
area under the ROC curve (AUC) in table 2b. Majority voting methods only produce one point on
the ROC curve between 0 and 1 as they convert the scores to votes (-1 becomes a negative vote,
1 and 3 become positive) and produce binary outputs. These methods have similar results to the
mean score approach, with the weighted version performing slightly worse, perhaps because too
much information is lost when converting scores to votes to be able to learn base classifier weights
correctly.

With Gibbs-sampling IBCC we collected samples until the mean of the sample label values con-
verged. Convergence was assumed when the total absolute difference between mean sample labels
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(a) Average Reciever operating characteristic (ROC) curves.

Method AUC

Mean of Scores 0.7543

Weighted Sum 0.7722

Simple Majority Voting 0.7809

Weighted Majority Voting 0.7378

Gibbs-IBCC 0.9127

VB-IBCC 0.9840

(b) Area under the ROC curves (AUCs).

Figure 2: Galaxy Zoo Supernovae: ROC curves and AUCs with 5-fold cross validation.

of successive iterations did not exceed 0.01 for 20 iterations. The mean time taken to run VB-IBCC
to convergence was 13 seconds, while for Gibbs sampling IBCC it was 349 seconds. As well as
executing significantly faster, VB produces a better AUC than Gibbs sampling with this dataset.

4 Communities of decision makers

In this section we apply a recent community detection methodology to the problem of determining
most likely groupings of base classifiers, the imperfect decision makers. Identifying overlapping
communities in networks is a challenging task. In recent work [11] we have presented a novel
approach to community detection that utilises a Bayesian factorization model to extract overlap-
ping communities from a “similarity” or “interaction” network. The scheme has the advantage
of soft-partitioning solutions, assignment of node participation scores to communities, an intuitive
foundation and computational efficiency. We apply this approach to a similarity matrix calculated
over all the citizen scientists in our study, based upon each users’ confusion matrix. Denoting πi as
the (3× 2) confusion matrix inferred for user i we may define a simple similarity measure between
agents i and j as

Vi,j = exp (−HD(πi, πj)) , (24)

whereHD() is the Hellinger distance between two distributions, meaning that two agents who have
very similar confusion matrices will have high similarity.

Application of Bayesian community detection to the matrix V robustly gave rise to five distinct
groupings of users. In figure 3 we show the centroid confusion matrices associated with each of
these groups of citizen scientists. The labels indicate the “true” class (0 or 1) and the preference for
the three scores offered to each user by the Zooniverse questions (-1, 1 & 3). Group 1, for example,
indicates users who are clear in their categorisation of “not supernova” (a score of -1) but who are
less certain regarding the “possible supernova” and “likely supernova” categories (scores 1 & 3).
Group 2 are “extremists” who use little of the middle score, but who confidently (and correctly) use
scores of -1 and 3. By contrast group 3 are users who almost always use score -1 (“not supernova”)
whatever objects they are presented with. Group 4 almost never declare an object as “not supernova”
(incorrectly) and, finally, group 5 consists of “non-commital” users who rarely assign a score of 3 to
supernova objects, preferring to stick with the middle score (“possible supernova”). It is interesting
to note that all five groups have similar numbers of members (several hundred) but clearly each
group indicates a very different approach to decision making.
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Figure 3: Prototypical confusion matrices for each of the five communities inferred using Bayesian
social network analysis (see text for details).

5 Discussion

We present in this paper a very computationally efficient, variational Bayesian, approach to imper-
pect multiple classifier combination. We evaluated the method using real data from the Galaxy Zoo
Supernovae citizen science project, with 963 data points and 1705 base classifiers. In our experi-
ments, our method outperformed all other methods, including weighted sum and weighted majority,
both of which are often advocated as they also learn weightings for the base classifiers. For our
variational Bayes method the required computational overheads were far lower than those of Gibbs
sampling approaches, thus giving much shorter compute time, which is particularly important for
applications that need to make regular updates as new data is observed, such as our application here.
Furthermore, on this data set at least, the performance was also better than the slower sample based
method. We have shown that a sensible structure emerges from the cohort of decision makers via
social network analysis and this provides valuable information regarding the decision-making of the
groups’ members.

Our current work considers how the rich information learned using this method can be exploited
to improve the base classifiers, namely the human volunteer users. For example, we can use the
confusion matrices, π, to identify users groups who would benefit from more training, potentially
from interaction with user groups who perform more accurate decision making (via extensions of
apprenticeship learning, for example). We also consider, via selective object presentation, ways
of producing user specialisation such that the overall performance of the human-agent collective is
maximised. We note that this latter concept bears the hallmark traces of computational mechanism
design and the incorporation of incentives engineering and coordination mechanisms into the model
is one of our present challenges.
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Abstract

For now over a decade, real-time strategy (RTS) games have been challenging
intelligence, human and artificial (AI) alike, as one of the top genre in terms of
overall complexity. RTS is a prime example problem featuring multiple interact-
ing imperfect decision makers. Elaborate dynamics, partial observability, as well
as a rapidly diverging action space render rational decision making somehow elu-
sive. Humans deal with the complexity using several abstraction layers, taking
decisions on different abstract levels. Current agents, on the other hand, remain
largely scripted and exhibit static behavior, leaving them extremely vulnerable to
flaw abuse and no match against human players. In this paper, we propose to
mimic the abstraction mechanisms used by human players for designing AI for
RTS games. A non-learning agent for StarCraft showing promising performance
is proposed, and several research directions towards the integration of learning
mechanisms are discussed at the end of the paper.

1 Introduction

The real-time strategy (RTS) video game genre began to appear roughly two decades ago. Pub-
lished in 1992, Dune II (Westwood Studios)1 already featured the core concepts of RTS. However,
the genre only started getting popular a few years later with the release of titles such as Warcraft
(Blizzard Entertainment)1 in 1994 or Command & Conquer (Westwood Studios)1 in 1995. Other
titles followed, each bringing new additions to the variety and, in 1998, StarCraft (Blizzard Enter-
tainment)1, one of the best-selling video games and now an acknowledged reference, cemented RTS
in the industry. Part of the appeal of RTS games comes from their complexity and the control diffi-
culty resulting from the intensive multitasking they require. In StarCraft tournaments for example,
professional players routinely exceed 200 actions per minute. While multitasking poses no issues to
computers, they are confronted with the intractable problem of learning in such convoluted environ-
ments. The large number of units to control as well as the diverse tasks to complete, coupled with
partial observability, result in complex game dynamics.

Besides partial observability, the main cause for imperfect decision making in RTS games has to do
with the way the complexity is managed, which is abstraction. Abstraction is an example mechanism
used to summarize large quantities of information into a more compact and manageable, albeit
abstract form. While it is an amazingly useful and powerful tool, there is at least one significant
downside to using it: loss of information. By successively synthesizing numerous basic elements
into abstract form, knotty details are eventually overlooked. Thus, abstraction could be seen as an
ultimately lossy compression process. Because the quantity of information available at any moment
and throughout the entire game is too large, part of it is inevitably discarded in the process of
analyzing and rationalizing the game state.

1Westwood Studios and Blizzard Entertainment as well as Dune II: The Building of a Dynasty, Command
& Conquer, Warcraft and StarCraft are registered trademarks.
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Within an ideal framework, agents should not lose any information when analyzing the game state
as this loss is only associated to the abstraction mechanisms used by human beings. In practice, this
is not the case: agents also discard information because we are not capable of programming them
to consider every information. Although this may seem counter-intuitive, the same flaw we suffer
from is reintroduced in agents for the simple fact that we do not possess the technology to handle
the game in raw form. Part of the objective of this work is thus to propose to the RTS community
a simple and generic agent model based on abstract concepts to help efficiently build agents for
different RTS games. In this document, we explore the RTS context and propose a modular and
hierarchical agent design inspired by abstraction mechanisms used by human players with the aim
of subsequently adding learning features. We then provide some promising experimental results in
the particular case of StarCraft, and discuss some research directions opened by this work.

The following of the paper is structured as follows. Section 2 quickly covers some related work.
Section 3 presents RTS games in detail. In Section 4, we provide an efficient modular and hierarchi-
cal agent design. Finally, we conclude and briefly discuss some future works in section 5.

2 Related Work

During the last decade, the scientific community has acknowledged that RTS games constitute rich
environments for AI researchers to evaluate different AI techniques. Development frameworks for
RTS agents such as the ORTS (Open RTS) project (Buro and Furtak, 2004) appeared and research
work started to tackle some of the challenges offered by the RTS genre. Due to the inherent difficulty
of designing good RTS agents able to address the multitude of problems they are confronted to, most
work has been concerned with specific aspects of the game.

The strategy planning problem is probably the one that has received the most attention with the
success of case-based planning methods to identify strategic situations and manage build orders.
An approach based on case generation using behavioral knowledge extracted from existing game
traces was tested on Wargus2 (Ontañón et al., 2007). Other approaches for case retrieval and build
order selection were tested on the same game (Aha et al., 2005; Weber and Mateas, 2009a). A
case retrieval method based on conceptual neighborhoods was also proposed (Weber and Mateas,
2009b). The strategy planning problem has also been addressed with other techniques such as data
mining (Weber and Mateas, 2009c). By analyzing a large collection of game logs, it is possible
to extract building trends and timings which are then used with matching algorithms to identify
a strategy or even predict strategic decisions. Evolutionary methods have been employed as well,
mostly in strategy generation (Ponsen et al., 2006). Meanwhile, some work has focused on lower-
level problems like micro-management. Monte Carlo planning was among other things applied to
simple CTF (“Capture The Flag”) scenarios on the ORTS platform (Chung et al., 2005).

Although the above-mentioned works all showed interesting results, none actually takes on all the
aspects of the RTS genre. Other works have instead considered the entire problem and present com-
plete agents. A cognitive approach was tested using the ORTS infrastructure, though it suffered from
artificial human multitasking limitations (Wintermute et al., 2007). Another approach was based on
an integrated agent composed of distinct managers each responsible for a domain of competence
(McCoy and Mateas, 2008). Although the design was clear, it lacked hierarchical structure and unit
management was largely simplified.

While interesting, these do not offer a clear and simple design to develop and improve agents for RTS
games. The model we suggest in this document is simple, efficient and generic and can potentially
be used to add learning capabilities in new agents.

3 Real-time Strategy

In RTS games, players typically confront each other in a map with a unique terrain configuration.
They start with a set number of units and must build a force to destroy all opponents. Players do
not have access to the entire game state. Only areas where they have deployed units are visible.
This is commonly referred to as the fog of war. Different types of units can be built throughout

2Wargus is a clone of Warcraft II, a RTS title published by Blizzard Entertainment in 1995.
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the game. Each has its own attributes such as hit points, speed, range, whether it can fly, whether
it is biological, or any other attribute part of the game mechanics. Each unit type also costs a
certain amount of resources and requires some technology. Resources can be gathered from specific
locations on the battlefield while technologies can be researched by players to unlock the desired unit
types. Besides attributes, units also have special abilities (i.e., activating a shield). These abilities
are either innate or need be unlocked. Depending on the game, some units may evolve during their
lifespan, either acquiring new abilities or improving their base attributes. Some games also feature
an upgrade system, which allows players to increase the performance of certain units (i.e., increase
all infantry weapon damage).

Another characteristic of RTS games adding to their diversity and complexity is the concept of race.
Players do not necessarily have access to the same units and technologies. Before the game starts,
each player may choose a race. Depending on the choice, entirely different, yet balanced, sets of
units and technologies can be available to different players. In StarCraft, players can choose among
three races: the Terrans who excel at defense and adaptation, the Zerg with their overwhelming
swarms and the Protoss, a humanoid species with unmatched individual fighting prowess.

One last, and important, aspect in RTS is diplomacy. Players can decide to form alliances or break
them during a game to further their own interests. Extreme complexity may arise from such contexts
and, as far as it pertains to this document, we instead focus on the simpler free-for-all setting when
discussing agents.

Obviously, players must constantly take a multitude of decisions on different time scales. They must
decide what and when units should be built, whether the current income is sufficient or new resource
sites should be controlled, when to attack or to defend, when to retreat during an attack or whether a
diversion is required, whether some unit should be on the front line, whether a special ability should
be used, etc. It is also clear that players need to know what their opponents are planning in order to
make good decisions and therefore have to constantly go on reconnaissance. By noting that an order
can be sent to each unit at any time in the game and that the number of units a player owns is often
larger than one hundred, it comes with no surprise that these games are challenging.

4 Agent Design

We first describe in Subsection 4.1 the concept of abstraction upon which the modular and hier-
archical design detailed in Subsection 4.2 is based. We provide experimental results showing the
performance of our agent playing StarCraft and discuss some limitations in Subsection 4.3.

4.1 Overcoming Complexity

Abstraction can be seen as the ability to reduce information into sets and structures for addressing
a particular purpose. In the context of RTS games, the complexity and the large number of units
to control cause human players to instinctively resort to abstraction. Instead of thinking about each
unit and its abilities individually, they think about groups of units and more abstract abilities such
as defense or harassment. Players thus use abstraction to efficiently control the environment. Also
simplified by abstraction are objectives. Typically, the objective in an RTS game is to destroy all
enemy units. Since there are many units, humans do not think about defeating each enemy unit.
Rather, they move along abstract objectives like defeating an enemy outpost or primary base. Using
abstract elements of this kind, we can then understand how RTS can be structured into a more
manageable problem.

The modular and hierarchical agent model we next present is structured around the primary tasks
we were able to identify. It is composed of different abstract managers generic enough to be used in
a wide array of RTS games.

4.2 A Modular and Hierarchical Design

When looking at the tasks players must solve, we were inclined to identify to identify two categories
based on task decomposition: production-related tasks and combat-related ones. Production tasks
include everything from economy management and expansion to build order management and tech-
nology appraisal. On the other hand, combat tasks regroup all combat management elements such
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as attacking a base or defending an outpost. Furthermore, we divide tasks according to temporal
factors. The first group deals with long-term objectives and is referred to as strategy. Decisions at
this high level consist of abstract orders like performing a rush3. The second one, called tactics,
consists of mid-term tasks such as winning a battle. Examples of decisions would be engaging on
two fronts or retreating from combat to force the enemy to move to a designated location. The third
and last group gathers the remaining short-term objectives. These involve more concrete orders like
destroying a specific unit or using a special ability.

As a result, a hierarchical and modular model is proposed in Figure 1. It features a strategy manager
at the top level taking all strategic decisions. Directly below come two other managers. A production
manager handles construction as well as build orders and controls in turn a number of work squad
managers. On the other side, a combat manager takes care of tactical decisions and controls several
military squad managers. Information thus travels from the strategy manager and is successively
translated into lesser abstract decisions until it reaches the managers at the lowest level which relay
direct orders to units on the battlefield. This process is illustrated in Figure 2.

Figure 1: A hierarchical and modular design.

Figure 2: Order processing. In the production order example (left), the strategy manager decides to
train 8 marines. This order is relayed to the production manager where it is processed and translated
into a series of orders suchs as building a barracks and acquiring the necessary resources. The latter
is in turn passed to a mining squad manager which sends workers out to a mineral field. The combat
order example (right) can be analyzed is a similar fashion. When the strategy manager decides to
attack, it raises an attack flag in the combat manager which responds by preparing some squads
using the available units and locating a nearby target like an outpost. It then sends the squads there
which run into a patrol unit on the way and receive the order to destroy it from their managers. We
can thus see how orders spawn in the strategy manager as abstract decisions and are processed into
more and more concrete decisions until they are eventually translated into specific unit commands.

3Quick attack against a supposedly unprepared opponent
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4.3 Experimental Results and Limitations

In this section, we illustrate the performances of our agent in the particular case of StarCraft. The
resulting agent is capable of playing full games as a Terran player facing a Zerg opponent. As can
be seen in Tables 1 and 2, the agent controls units very efficiently compared to the default Zerg AI.
It managed to score an average of 3 units lost in 10 games versus the opponent’s 84.5 average. It
even succeeded in winning without losing a single unit in a couple of games.

While this design allows for efficient agent implementations, it does not address the primary issue
agents face in RTS games. Indeed, without learning, even an efficient agent will eventually lose
against an adaptive opponent as the latter detects its inevitable flaws and starts exploiting them.
Flaws can originate from multiple sources. First, it may be that our understanding of the way humans
process game information is erroneous and omits important functions, resulting in an incomplete
design. Furthermore, even a perfectly similar processing design would still fail to account for all
possible game scenarios, leaving some situations uncovered and potentially exploitable.

Game A B C D E
Units produced 73 62 72 69 68
Units killed 81 79 78 75 72
Units lost 10 2 0 0 1

Game F G H I J
Units produced 77 76 63 85 78
Units killed 100 101 83 74 102
Units lost 2 1 0 13 1

Table 1: Unit statistics.

AUP AUK AUL Games won Total games
72.3 84.5 3 10 10

Table 2: Average units produced (AUP), killed (AUK) and lost (AUL).

5 Conclusions and Future Works

In this document, we have discussed some thoughts about RTS and the difficulties around it. We
proposed a modular and hierarchical agent design inspired by human abstraction mechanisms for
which promising experimental results were reported.

While the model described above can be used to efficiently implement effective agents, we still need
to embed learning capabilities in order to address the main weakness of current agents, that is the
lack of adaptation. Hence, with this model, we can imagine adding learning for carefully selected
tasks in the different managers. For example, the strategy manager could learn new strategies by
examining the opponents build orders and mimicking them. New tactics, such as squad formations,
could also be learned from the opponents own unit grouping. At yet lower levels, military squad
managers could learn to prioritize select targets based on the units the opponent takes out first.
Although this has not been tested yet, the possibility of adding such features opens avenues to an
exciting future for AI in RTS games. Yet further, another interesting step would be the automatic
learning of control structures such as the one we proposed.
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Abstract

This paper considers group decision making by imperfect agents that only know
quantized prior probabilities for use in Bayesian likelihood ratio tests. Global de-
cisions are made by information fusion of local decisions, but information sharing
among agents before local decision making is forbidden. The quantization scheme
of the agents is investigated so as to achieve the minimum mean Bayes risk; op-
timal quantizers are designed by a novel extension to the Lloyd-Max algorithm.
Diversity in the individual agents’ quantizers leads to optimal performance.

1 Introduction

Consider a binary decision problem. The Bayes rational decision making strategy is to perform the
likelihood ratio test (LRT). Decision makers first compute the likelihood ratio of states of an object
based on an observation. Then they make a decision by comparing the ratio to a decision threshold
determined by the prior probability of the state and their costs. Not only do LRTs minimize Bayes
risk, but also psychology experiments suggest that human decision makers employ them [1, 2].

Optimal LRTs require precise knowledge of the prior probabilities of object states. Much previous
research considers the prior probability to be a constant known to decision makers. However, de-
cision makers may face a great variety of objects. For example, soccer referees handle more than
twenty-two players in one game and salespeople at stores observe hundreds of customers in one
day. This is problematic because players have different prior probabilities of committing fouls and
customers have different prior probabilities of making purchases.

Decision makers should use different thresholds uniquely optimized to different objects of decision
making, such as players or customers. Computing thresholds and then remembering them is an
information processing burden, especially for human decision makers that often resort to categorical
and coarse thinking [3, 4]. Human decision makers can afford around seven categories without
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getting confused [5]. Thus, we model decision makers as grouping similar objects together and
treating them identically by applying a single decision threshold. By classifying all objects into a
small number of categories, decision makers can handle infinitely many objects; however decision
makers consequently have limited threshold precision, a type of bounded rationality.

In the context of LRTs, categorization of objects is equivalent to quantization of their prior probabil-
ities. With this idea, we move from considering a single object with a constant prior probability to
considering an ensemble of objects with performance averaged over the distribution of prior proba-
bilities.

Consider a decision-making group of N agents that chooses between two hypotheses h0 and h1.
Agents make local hard decisions without knowing other agents’ decisions. Local decisions are
combined by a fusion center to produce a global decision. The fusion center has a fixed symmetric
fusion rule of the L-out-of-N form whereby the global decision is h1 when L or more agents choose
h1. The symmetric fusion rule implies that all agents have an equal voice. Due to information-
processing constraints, agents must quantize prior probabilities to one of K values. Our interest
here is to design quantizers that lead to the smallest Bayes risk on average.

The study of quantization of prior probabilities originates from [6], which focuses on the minimum
mean Bayes risk error (MBRE) quantizer of a single agent. Maximum Bayes risk error is considered
in [7, 8]. Recent results and economic implications are reviewed in [9].

We have previously considered a distributed hypothesis testing problem with similar imperfect
agents, but where each agent is assumed to know other agents’ quantized prior probabilities, whether
they have a common interest [8, 10] or whether they have conflicts of interest [11]. The assumption
in these prior papers enables agents to optimize decision rules so as to minimize Bayes risk within
either the collaboration or the conflict system.

Information about other agents’ quantizers should not be taken for granted; it requires a coordination
mechanism built on communication channels. Such communication may not be possible in human
group decision-making scenarios due to geographic separation, desire to remain clandestine, or if N
is too large. In engineering applications, memory or power constraints may prevent detectors from
exchanging any information with neighboring detectors. In these scenarios, each agent has to make
decisions based on its information—its quantized prior probability and observed signal—only. In
this paper, agents do not know how other agents quantize prior probabilities.

Lack of knowledge about others makes it impossible for agents to collaborate by sharing a common
goal. Hence, their quantizers need to be cleverly designed so that local decision making becomes
harmonious with respect to the global mean Bayes risk (MBR), the distortion measure for quantiza-
tion. A modified Lloyd-Max algorithm can design MBR-optimal quantizers. It is demonstrated that
diversity among agents in quantization of prior probabilities can be helpful to improve the quality of
group decision making.

The group decision-making model we consider is described in Section 2. In Section 3, we analyze
the mean Bayes risk in terms of endpoints and representation points of quantizers. Then we propose
an algorithm to design optimal quantizers. An example of optimal quantizers obtained from our
algorithm is presented in Section 4. Section 5 concludes the paper.

2 Distributed Decision-Making Model with Imperfect Agents

We consider a team of N agents and an object in one of two binary states H ∈ {h0, h1}. The prior
probability of the object being in state h0, p0 = P{H = h0}, is a realization of a random variable
P0 drawn from its distribution fP0

. Since the prior probability of being in state h1 is determined by
p0 through p1 = 1 − p0, by the term prior probability we simply mean p0. The prior probability
is important for good decision making but Agent i only knows its quantized value of the prior
probability, qi(p0).

Agent i makes a noisy state measurement Yi with likelihood functions fYi |H(yi |h0) and
fYi |H(yi |h1). Agent i then makes a hard decision Ĥi whether the object is in state h0 or in h1
based on the quantized prior probability qi(p0) and the observation Yi. Its decision is transferred
to a fusion center, which makes a global decision Ĥ as h1 if it receives h1 from L or more agents
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Figure 1: A set of quantizers q1, . . . , qN categorizes cells C1, . . . , CNCell
.

and as h0 otherwise. The agents incur cost c10 for a false alarm (Ĥ = h1 when H = h0) and c01
for a missed detection (Ĥ = h0 when H = h1); costs c10 and c01 are common for all agents. For
simplicity, correct global decisions incur zero cost.

Agent i optimizes its decision rule as if it is the only decision maker because it does not have any
information about other agents:

fYi |H(yi |h1)
fYi |H(yi |h0)

Ĥi(y)=h1

R
Ĥi(y)=h0

c10qi(p0)

c01(1− qi(p0))
. (1)

This decision rule yields an error with probability P I
e,i = P{Ĥi = h1 |H = h0} when H = h0 and

with probability P II
e,i = P{Ĥi = h0 |H = h1} when H = h1.

The agents cannot collaborate to design a decision rule, but they still fuse their decisions to make
a global decision. By using L-out-of-N fusion rules, the global decision is wrong if L or more
agents send h1 when H = h0 or if N − L + 1 or more agents send h0 when H = h1. These error
probabilities, P I

E and P II
E , are used in computing the Bayes risk

R = c10p0P
I
E + c01(1− p0)P II

E .

3 Optimal Quantization of Prior Probabilities

Agent i has quantizer qi for prior probability p0, which hasK cells [0, b(i)1 ), [b
(i)
1 , b

(i)
2 ), . . . , [b

(i)
K−1, 1]

with corresponding representation points a(i)1 , a
(i)
2 , . . . , a

(i)
K , where a(i)k = qi(p0) for all p0 ∈

[b
(i)
k−1, b

(i)
k ). We define a set of endpoints {0, b1, b2, . . . , bNCell−1, 1}, 0 < b1 < b2 < · · · <

bNCell−1 < 1, as the union of endpoints of all quantizers q1, . . . , qN and define cells Ck as the inter-
vals [bk−1, bk), whereNCell is the number of the cells Ck. The maximum number ofNCell isN(K−
1) + 1. For cell Ck, we define a vector of representation points ak = (q1(p0), q2(p0), . . . , qN (p0)),
where p0 ∈ Ck, see Fig. 1. The necessary conditions of representation points and endpoints for local
optimality of the quantizers are now derived.

3.1 Representation points

Quantization performance is measured by Bayes risk averaged over P0:

E[R] =
∫ 1

0

(
c10p0P

I
E(q1(p0), . . . , qN (p0)) + c01(1− p0)P II

E (q1(p0), . . . , qN (p0))
)
fP0(p0) dp0.

Within cell Ck, since (q1(p0), . . . , qN (p0)) = ak is constant, the mean Bayes risk (MBR) is

E[R]k =

∫
Ck

(
c10p0P

I
E(ak) + c01(1− p0)P II

E (ak)
)
fP0

(p0) dp0 = c10π
I
kP

I
E(ak)+c01π

II
k P

II
E (ak),

where πI
k =

∫
Ck p0fP0(p0) dp0 and πII

k =
∫
Ck(1− p0)fP0(p0) dp0 are constants with respect to ak.
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Let us fix all representation points except that of qz , akz , in Ck. The mean Bayes risk in Ck can be
written as E[R]k = α1P

I
e,z+α2P

II
e,z+α3, where α1, α2, and α3 are positive constants. Since P II

e,z is
strictly convex in the P I

e,z and vice versa [12], E[R]k is strictly convex in P I
e,z(akz) and P II

e,z(akz).

The convexity is preserved in the entire MBR E[R] = E[R]1 + . . . + E[R]NCell
because the MBR

in each cell is strictly convex in P I
e,z(akz) and P II

e,z(akz) or constant. Therefore, the value of akz
that minimizes the MBR exists uniquely for any 1 ≤ k ≤ NCell and 1 ≤ z ≤ N . The value of akz
should be the minimum point.

3.2 Endpoints

Let us fix all representation points and endpoints except an endpoint bj . The endpoint bj only affects
two adjacent cells Cj and Cj+1, whose boundary is bj .

E[R]j + E[R]j+1 =

∫ bj

bj−1

(
c10p0P

I
E(aj) + c01(1− p0)P II

E (aj)
)
fP0

(p0) dp0

+

∫ bj+1

bj

(
c10p0P

I
E(aj+1) + c01(1− p0)P II

E (aj+1)
)
fP0(p0) dp0

Taking the derivative of the MBR, we have

d

dbj
(E[R]) =

d

dbj
(E[R]j + E[R]j+1)

=
(
c10bj(P

I
E(aj)− P I

E(aj+1))− c01(1− bj)(P II
E (aj+1)− P II

E (aj))
)
fP0(bj) (2)

If we compare each entry of two vectors aj and aj+1, at least one entry has different values. For any
entry that has a different value, aj+1 has a greater value than aj does because the former represents
larger P0. A bigger representation point leads to a smaller local false alarm probability. Thus,
P I
E(aj+1) < P I

E(aj). On the contrary, P II
E (aj+1) > P II

E (aj). Let β1 = P I
E(aj) − P I

E(aj+1) > 0
and β2 = P II

E (aj+1)− P II
E (aj) > 0.

d

dbj
(E[R]) = ((c10β1 + c01β2)bj − c01β2)fP0

(bj). (3)

This first derivative is zero at only one or no point if fP0
(p0) > 0,∀p0 ∈ [0, 1]. This means that

E[R] has only one or zero extreme point for bj ∈ (bj−1, bj+1): if it has one extreme point, then it is
the minimum point. Otherwise, either bj−1 or bj+1 is the minimum point. The value of bj should
be the minimum point.

3.3 Algorithm

The iterative Lloyd-Max algorithm is applied to find an optimal quantizer in a single-agent decision-
making model [6]. In this problem, however, the algorithm needs to be modified so as to optimizeN
different quantizers together. The key to the Lloyd-Max algorithm is alternating iterations of finding
optimal endpoints while fixing representation points and finding optimal representation points while
fixing endpoints.

In our group decision-making model, optimization steps are complicated because of dependency
among variables; a change of one representation point also changes optimal values of other rep-
resentation points. Hence, representation points are repeatedly adjusted until every representation
point is optimal for the other representation points and given endpoints. Likewise for optimization
of endpoints.

We use the following alternating nested-iteration optimization algorithm:

1. Assign initial values to endpoints and representation points.
2. (E-Step) Optimize endpoints with representation points fixed.

(a) From the first endpoint variable b(1)1 to the last one b(N)
K−1, successively optimize each

variable.
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Figure 2: Bayes risk for uniformly distributed P0 and K = 2. (a) An optimal set of quantizers (cell
endpoints as +’s and representation points as ◦’s) and the resulting Bayes risk. (b) The performance
loss in terms of Bayes risk due to the quantization of prior probabilities.

(b) Repeat step (a) until all endpoints become stable, i.e., a new iteration does not change
any endpoints.

3. (R-Step) Optimize representation points with endpoints fixed.

(a) From the first representation point variable a(1)1 to the last one a(N)
K−1, successively

optimize each variable.
(b) Repeat step (a) until all representation points become stable.

4. Iterate E-Step and R-Step until all endpoints and representation points become stable.

4 Example

As an example, let us consider the following measurement model for N = 3 agents:

Yi = sm +Wi, i = 1, . . . , N, m ∈ {0, 1}, (4)

where s0 = 0, s1 = 1, and Wi is a zero-mean Gaussian random variable with variance σ2 = 1. The
Bayes costs are c10 = c01 = 1. The local decisions are fused by MAJORITY rule (2-out-of-3 rule).

Fig. 2a shows Bayes risk when the agents can distinguish 2 categories, i.e., they use 2-level quan-
tizers. The Bayes risk (solid piecewise line) is compared to the Bayes risk when the agents can
distinguish any prior probability exactly and collaborate with others (dashed curve) like in [10],
which is the best performance that the agents can achieve. The excess Bayes risk, the difference
between the Bayes risks with and without quantization, is depicted in Fig. 2b. It shows the perfor-
mance loss due to quantized prior probabilities compared to the best performance. For comparison,
Fig. 2b also shows the performance loss when the agents are forced to use identical quantizers (gray
dashed curve) and the performance loss when the agents use diverse quantizers and can collaborate
by sharing their quantized values (dash-dot curve). The latter is the best performance that the agents
can achieve with quantized prior probabilities [8, 10].

The Bayes risks when the agents use 4-level quantizers are depicted in Fig. 3.

5 Conclusion

We have discussed decision making by multiple agents that have imperfect perception ability. There
are two factors that worsen the quality of global decisions. First, they perform local testing based on
quantized prior probabilities. Second, they do not know how other agents quantize prior probabili-
ties. We have determined the effect of these factors on Bayes risk in decision making.

To minimize the negative influence from these factors, we have defined mean Bayes risk as the
optimization criterion for prior-probability quantizers. The Lloyd-Max algorithm is modified to an
algorithm with double-iteration structure to design optimal quantizers. Using the algorithm, we
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Figure 3: Bayes risk for uniformly distributed P0 and K = 4. (a) An optimal set of quantizers (cell
endpoints as +’s and representation points as ◦’s) and the resulting Bayes risk. (b) The performance
loss in terms of Bayes risk due to the quantization of prior probabilities.

have provided an example of additive white Gaussian noise model. The result shows that the MBR
when the agents use diverse quantizers is lower than the MBR when they use identical quantizers.
It is reasonable because NCell (= N(K − 1) + 1) when they use diverse quantizers is greater than
NCell (= K) when they use identical quantizers. Therefore, we can conclude that the diversity
among agents is still helpful even though they cannot fully utilize the diversity because of lack of
knowledge about other agents.
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Abstract

An increasing number of theoretical frameworks have incorporated an abnormal
sensitivity response inhibition as to decision-making and working memory (WM)
impairment as key issues in Attention deficit hyperactivity disorder (ADHD). This
study reports the effects of 5 weeks cognitive training (RoboMemo R©, Cogmed)
with fMRI paradigm by young adolescents with ADHD at the level of behavioral,
neuropsychological and brain activations. After the cognitive remediation, at the
level of WM we observed an increase of digit span without significant higher
risky choices reflecting decision-making processes. These preliminary results are
promising and could provide benefits to the clinical practice. However, models are
needed to investigate how executive functions and cognitive training shape high-
level cognitive processes as decision-making and WM, contributing to understand
the association, or the separability, between distinct cognitive abilities.

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurobehavioral disor-
der of childhood and impacts many aspects of development at home and at school, including social,
emotional and cognitive functioning. ADHD is a highly prevalent disorder worldwide, thought to
affect 5%-9% of children [1] and 3-4% of adults [2, 3]. Longitudinal follow-up studies show that the
majority of ADHD children and teenagers experience persistent symptoms and functional impair-
ments into early adultdhood [4, 5, 6]. Throughout the life cycle, patients with ADHD have high rates
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of comorbidity with oppositional defiant disorder, conduct disorder, mood disorder (both unipolar
and bipolar), anxiety disorders, and learning disorders [7]. Several studies have consistently docu-
mented that ADHD is associated with high levels of grade retention, need for tutoring, lower levels
of overall achievement when compared with control subjects [8]. The annual costs of ADHD in the
US is substantial, amounting to a total excess cost of USD 31.6 billion in 2000 [9].

The most effective and widely used treatments for ADHD are medication and behavior modification.
These empirically-supported interventions are generally successful in reducing ADHD symptoms,
but treatment effects are rarely maintained beyond the active intervention. Because ADHD is now
generally thought of as a chronic disorder that is often present well into adolescence and early
adulthood, the need for continued treatment throughout the lifetime is both costly and problematic
for a number of logistical reasons.

The evolving field of research on ADHD has now moved beyond the search of a common core
dysfunction towards a recognition of ADHD as a heterogeneous disorder of multiple neuropsycho-
logical deficits and hypothesized causal substrates [10, 11, 12, 13, 14, 15]. For many years the focus
of cognitive research has been on deficits in executive function [16, 17], especially inhibition [18].
Recently, however, an increasing number of theoretical frameworks have incorporated an abnormal
sensitivity response inhibition as to reinforcement and WM impairment as three of the key issues in
ADHD [19, 20, 13, 11]. An abnormal sensitivity to reinforcement may influence cognitive processes
such as decision making through unconscious “somatic marker signals” that arise from bioregulatory
processes [21]. WM capacity is an important factor to determining problem solving and reasoning
ability. WM impairment is of central importance in ADHD, probably caused by impaired function
of the prefrontal and parietal cortex [19, 22, 13, 23].

Recent studies observe the impact of decision-making and reinforcement contingencies on ADHD
subjects on performance and on levels of motivation [20], i.e. strategies of reward and response
cost [10], or of WM training [24, 25]. Children with ADHD have been found to show an increased
sensitivity to instances of (immediate) gratification (see [20] for review). Otherwise, children with
ADHD have been found to require more response cost than controls in order to perform accurately
[26], suggesting that children with ADHD suffer from a diminished sensitivity to negative outcomes.

At the behavioral level a comparison between ADHD children and normal controls aged 7 to 10
years performing a simple probabilistic discounting task has observed children with ADHD opted
more frequently for less likely but larger rewards than normal controls [27]. Shifts of the response
category after positive or negative feedback, however, occurred as often in children with ADHD
as in control children. In children with ADHD, the frequency of risky choices was correlated with
neuropsychological measures of response time variability but unrelated to measures of inhibitory
control. The authors have suggested that the tendency to select less likely but larger rewards possibly
represents a separate facet of dysfunctional reward processing, independent of delay aversion or
altered responsiveness to feedback.

WM is the ability to retain different pieces of information and to then access them to make a deci-
sion. Both, WM and inhibition are correlated with IQ. In turn, IQ is correlated with impatience and
present-biased preferences [28, 29, 30, 31]. Risk preferences also correlate with IQ, with smarter
individuals tending to make more risk-neutral choices and being less sensitive to losses [29]. When
both measures are available, WM is often more strongly correlated with these measures than IQ,
indicating that this aspect of executive function is particularly important [31]. Thus, these correla-
tional studies suggest that executive function affects choices in the direction of making them more
compatible with the economic model.

Recent studies have shown that WM can be substantially improved with an intensive training regi-
men. Such training has been shown to have an impact on non-trained tasks directly related to WM
[25, 32] and IQ tests [32, 31]. More intriguingly, WM training also appears to have transfer effects
less directly related to measures that correlate with executive function. WM and inhibition task
activate common brain regions [33], including right inferior frontal gyrus and right middle frontal
gyrus, as well as right parietal regions. Increased brain activity is found in several of these regions
after intensive WM training [24, 34], thus leading to the hypothesis that WM training may also have
spillover effects onto inhibition.

Consistent with this hypothesis, children with ADHD, after a sequence of intensive WM training, are
reported to be less inattentive and less impulsive by their parents, and have improved performance
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in WM as well as inhibitory tasks [25]. Similarly, no transfer effects of more generalized cognitive
training in an elderly subject population were found [35]. Thus, evidence on transfer effects of
cognitive trainings is mixed on the score. Results seem to indicate that cognitive training has stronger
transfer effects in ADHD populations.

2 Methods

2.1 Participants

ADHD participants were 11-15 years old adolescents with ADHD (DSM-IV criteria) and with
methylphenidate treatment. They were subdivided in two groups.

• Adolescents ADHD with methylphenidate and with cognitive training (N=18 : 4 girls and
14 boys ; 13±0.9 years old)

• Adolescents ADHD with methylphenidate without cognitive training (N=10 : 1 girl and 9
boys ; 12±1.1 years old)

The controls were healthy subjects (N=21 : 5 girls and 14 boys ; 12±1.8 years old) who did the
cognitive training. The following preliminary results investigate only the adolescents ADHD with
methylphenidate and with cognitive training, and the control subjects with the cognitive training.
Regarding previous studies [25, 34] and research fundings no control group without training was
included at this study.

Mini International Neuropsychiatric Interview (M.I.N.I.) [36] is a structured instrument completed
by the parents (or primary caregiver) probing the most common child psychiatric diagnoses. This
instrument allows the diagnosis of ADHD and co-morbid symptoms, including oppositional defi-
ant disorder, conduct disorders, internalising disorders. The MINI is relatively easy to use for re-
searchers and does not require comprehensive clinical training. This instrument allows the diagnosis
of ADHD with DSM-IV criteria (DSM-IV, 1994) [37] and co-morbid symptoms, including opposi-
tional defiant disorder, conduct disorders, internalizing disorders. The MINI is relatively easy to use
for researchers and does not require comprehensive clinical training. ADHD characteristic were also
assessed using the Revised Conners’ Parent Rating Scale (CPRS-R; [38]) and the Conners-Wells’
Adolescent Self-Report Scale CASS; [39],and the BRIEF [40, 41] specifically designed to assess
child and adolescent everyday executive skills in natural, everyday environments, including home
and school.

The Conners’ Parents Rating Scale (CPRS-R) [38] is a validated 82-items parental assessment con-
taining the following 9 subscales: family problems, emotional problems, conduct problems, anger
control problems, hyperactivity, ADHD index. DSM-IV total score, DSM-IV ADHD inattention,
and DSM-IV ADHD hyperactivity-impulsivity. Items will be scored on a 4-point scale (from 0, not
true, to 3, very much true). The psychometric properties of this revised scale appear adequate as
demonstrated by good internal reliability coefficient, high test-retest reliability, and effective dis-
criminatory power.

The Conners-Wells Adolescent Self Report of Symptom Scale (CAARS-L) [39] is a validated 87-
items self report assessment containing the following 9 subscales: family problems, emotional prob-
lems, conduct problems, anger control problems, hyperactivity, ADHD index, DSM-IV ADHD total
score, DSM-IV ADHD inattention, and DSM-IV ADHD hyperactivity-impulsivity. Items will be
scored on a 4-point scale (from 0, not true, to 3, very much true).

The neuropsychological measures were investigated by following tasks. The span-board task from
the WAIS-RNI testing battery [42] will be used to measure visuospatial WM. The mean performance
from trials with forward and backward repeating of the memoranda will be used in the analysis to
provide a more reliable measure. The WISC-III digit span subtest [43] is derived from scores of the
two subtests: digits forwards and digit backward. The first subtest clearly indexes verbal storage
processes, whereas the reverse version requires the subject to recall the series of digits in reverse
order, wich entails manipulation of information [22].

The Stroop Color and Word Test [44, 45] measures a participant’s ability to respond selectively to
one dimension of a multidimentional stimulus. Each of the three trials of the Stroop Test uses a card
containing five columns of 20 stimuli. The participant will be asked to complete as many of the
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stimuli as possible within 45 s. The Word trial requires the participant to read as rapidly as possible
the names of colours (red, blue, and green) printed on the card in black ink. The subsequent Color
trial requires the participant to name consecutively the color of each stimuli on a card containing
colored patches of red, blue, or green ink. Finally, the card for the Interference trial contains the
words red, blue, and green printed in a different colour, and the participant is asked to name the
colour of the ink of each stimulus. The three trials of the Stroop are hypothesized to assess reading
speed, naming speed, and interference control [46]

The visuo-spatial Corsi [47] is used to determine the visual-spatial memory span and the implicit
visual-spatial learning abilities. Participants sit with nine wooden 3x3 cm blocks fastened before
them on a 25 x 30 cm baseboard in a standard random order. The subject taps a sequence pattern
onto the blocks with participants must the replicate. The sequence length increases each trial until
the participant is no longer able to correctly replicate the pattern.

The Test Battery of Attentional Perforrmance (TAP 2.2) [48] is used to investigate the divided at-
tention which is the ability to successfully execute more than one action at a time, while paying
attention to two or more channels of information. The TAP 2.2 in a ”dual-task” paradigm, in which
two stimuli have to be attenuated simultaneously.

The Go/Nogo paradigm (Go/Nogo - TAP 2.2) [48] is used to test this form of behavioral control,
in which it is important to suppress a reaction triggered by an external stimulus to the benefit of an
internally controlled behavioral response. Go/Nogo test is used to measure a subject capacity for
sustained attention and response control. The test requires a participant to perform an action given
certain stimuli (press a button - Go) and inhibit that action under a different set of stimuli (not press
the same button - NoGo).

The Trailmaking Test (TMT B) from the Halstead-Reitan Neuropsychological Battery [49]. The
Trailmaking Test requires subjects to trace a path between consecutive letters scattered randomly
on the page (Form A) and alternative letters and numbers (Form B) as rapidly as they can without
making errors. The difference between B and A time is viewed as an index of set shifting ability
[13].

The Raven’s Colored Progressive Matrices (RCPM) [50] measures clear-thinking ability and con-
sists of 36 items in 3 sets, with 12 items per set (A and B from the standard matrices, with a further
set of 12 items between the two, as set Ab). The RCPM items are arranged to assess cognitive
development up to the stage when a person is sufficiently able to reason by analogy and adopt this
way of thinking as a consistent method of inference. Most items are presented on a colored back-
ground to make the test visually stimulating for participants. However, the very last items in set B
are presented as black-on-white; in this way, if a subject exceeds the tester’s expectations, transition
to sets C, D, and E of the standard matrices is eased. The stability of the measure over time and
across cultures has been demonstrated [51].

After the first visit (time=T1), a brain magnetic resonance imaging data collection including WM
stimuli was conducted for all subjects at the University Radiology Department of the CHUV in
Lausanne (Professor Reto Meuli) within the Unit of the Centre d’imagerie biomédicale (CIBM)
in Lausanne (Professor Matthias Stuber). After the 5 weeks cognitive training, the second visit
(time=T2) was performed including post-test assessments (ADHD scales, neuropsychological post-
test and post-test fMRI). After 2 months, the parents have filled an assement evaluation executive
functioning at home.

2.2 Cognitive Training

Participants do a systematic training of performing executive functions tasks during a 5-week period,
implemented in a computer program (RoboMemo R©, Cogmed). The cognitive training includes
visuospatial WM tasks as well as verbal tasks (remembering phonemes, letters, or digits). Each of
the games is designed to have an element of pressure and excitement, to maximize the subject’s
motivation to participate and the “rush” that has been shown to assist performance and decision
making processes in subjects with ADHD. The games are designed so that each participant c an do
his/her remediation each day at home, thereby accruing including time and date stamps.

The subjects perform 115 WM trials during each session. Total time will depend on the level and the
time taken between trials. Each session will last approximately 30-45 minutes (excluding breaks).
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Difficulty level will be automatically adjusted, on a trail-by-trial basis, to match the WM span of the
subject on each task. Response to each trial is logged to a file computer.

Once every week during the training period, a research psychologist calls participating the subjects,
and the teenager’s parents, to ask about technical difficulties and to check the number of sessions to
be uploaded. This procedure helps target compliance, serves to prevent lagtime due to technical dif-
ficulties, and reinforces progress linked to working memory and decision making during the training
period.

3 Results

The following preliminary results investigate only the adolescents ADHD with methylphenidate and
with cognitive training vs. the control subjects with the cognitive training.

The results shown in Figure 1 indicate that the adolescents with ADHD have a lower digit span
compared to control subjects. The digit span uses numbers. The subjects has to repeat back in
correct order immediately after presentation. Backward digit span is a more challenging variation
which involves recalling items in reverse order. In this test the examinee required to repeat 3 - 9
digits forward and 2 - 9 digits backwards. This difference is particularly evident in the backward
form, suggesting difficuties in verbal WM in accordance with Klingberg studies. These observations
are in concordance with observations of the literature on ADHD [19, 22, 14, 23] and seems to reflect
impaired function of the prefrontal and parietal cortex.

forward backward

ADHD (N=20)
CONTROL (N=12)

0

2

4

6

8

Figure 1: Digit Span of ADHD (N=20) vs. CONTROL (N=12) participants before cognitive reme-
diation.

After the cognitive remediation, we observed an increase of digit span (Fig. 2). Both groups made
equivalent progress and the index improvement of Cogmed training did not show significant differ-
ence between groups of ADHD participants (0.08, Mann-Whitney test). The effects of the training
were more effective for the adolescents with ADHD than in the control participants. In particular,
the clinical subjects describe a subjective positive decision making improvement at the end of the
cognitive training. The current data analysis do not show higher significant risky choices during the
2’800 WM trials of the cognitive training and the high flood of working memory. The cognitive
training seems to improve the ability to decision-making through the frequency of stimuli without a
stress of magnitude of penalty.

The follow up inquiry showed that most of the parents of the ADHD subjects perceived a positive
effect in the daily life (Fig. 3). The improvements are observed at school and at home relating school
performances, improvements in attention and concentration. The training’s effects are described
partially as effective, but the evaluation is globally positive. The parents describe a tendency to
be more engaged in intellectual work, to have more endurance and to evaluate better the ability to
engage into cognitive processes and to take breaks.
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Figure 2: Digit Span of ADHD vs. CONTROL before and after cognitive remediation.
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Figure 3: ADHD WM training perception: follow-up (2 months).

4 Discussion

The evolving field of research on ADHD has now moved beyond the search of a common core
dysfunction towards a recognition of ADHD as a heterogeneous disorder of multiple neuropsycho-
logical deficits and hypothesized causal substrates. An increasing number of theoretical frameworks
have incorporated an abnormal sensitivity response inhibition as to decision-making and working
memory (WM) impairment as key issues in Attention deficit hyperactivity disorder (ADHD). The
most effective and widely used treatments for ADHD are medication and behavior modification.
New interventions without drug therapy, as cognitive remediation and neurofeedback, are now nec-
essary to be explored as suggested by recents studies on WM in children and adolescents with
ADHD [24, 25].

This study reports the effects of 5 weeks cognitive training (RoboMemo R©, Cogmed) with fMRI
paradigm by young adolescents with ADHD at the level of behavioral, neuropsychological and
brain activations. These preliminary results are limited on neuropsychological data and on feedbacks
from parents and adolescents subjects. These preliminary results tend to confirm a lower digit span
in the ADHD group. This is particularly evident in the backward form, suggesting difficuties in
verbal WM in accordance with Klingberg studies. The current data analysis do not show significant
higher risky choices during the cognitive training and the high flood of WM. The cognitive training
seems to improve the ability to decision-making through the frequency of stimuli without a stress
of magnitude of penalty. The follow up inquiry showed that most of the parents of the ADHD
subjects perceived a positive effect in the daily life. These preliminary results are promising and
could provide benefits to the clinical practice, using for instance cognitive remediation training or
groups focuses on executive functions and decision-making with ADHD children and adolescents.
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Overall, the current literature leaves several questions unanswered: it is not clear to what extent WM
training can affect behavior in ADHD patients or in normal subjects. While the evidence suggests
that time preferences and risk preferences cannot be affected by WM training in normal subjects
the current literature has not tested whether WM training in normal subjects affects attention and
response inhibition in a more basic task such as the ANT or the go/no go task. Furthermore, while
some evidence exists on how WM training changes brain activity in a WM task, nothing is known
how it affects brain activity in other tasks. The previous paradigms don’t allow a clear assessment of
how WM training affects decision making in other areas such as risky choices or choices involving
delayed rewards–all areas in which ADHD patients are known to differ from the rest of the pop-
ulation. Our future work will explore fMRI data which could provide an objective measure of the
impact of WM and decision-making to others tasks by ADHD patients and controls. New researches
are needed to investigate in novel ways how executive functions and cognitive training shape high-
level cognitive processes as decision-making and WM, contributing to understand the association, or
the separability, between distinct cognitive abilities. Cognitive training could be of direct relevance
to improve abilities in cognitive process and choice evaluations in economic decision. Cognitive
training inducing brain plasticity that could be a reciprocal interplay between behavior, cognition
and brain biochemistry and should be relevant for psychiatry disorders as well applications in psy-
chology and others domains, as for instance computer sciences.

Acknowledgments

The Authors acknowledge the support of the Swiss National Science Foundation grants 3200BO-
118373, CR13I1-138032, and the Novartis Foundation of the scientific research. They wish to
thank Professor Reto Meuli of the University Radiology Department of the CHUV and Professor
Matthias Stuber of the Unit of the Centre d’ imagerie biomédicale (CIBM) in Lausanne. The Authors
thank also Dr. Alessandra Lintas of the Neuroheuristic Research Group at the Dept. of Information
Systems of UNIL for helping with editing and layout of the manuscript.

References

[1] S V Faraone, J Sergeant, C Gillberg, and J Biederman. The worldwide prevalence of ADHD:
is it an american condition? World Psychiatry, 2(2):104–113, Jun 2003.

[2] R C Kessler, L Adler, R Barkley, J Biederman, C K Conners, O Demler, S V Faraone, L L
Greenhill, M J Howes, K Secnik, T Spencer, T B Ustun, E E Walters, and A M Zaslavsky.
The prevalence and correlates of adult ADHD in the United States: results from the National
Comorbidity Survey Replication. Am J Psychiatry, 163(4):716–723, Apr 2006.

[3] J Fayad and R de Graaf. Cross-national prevalence and correlates of adult attention-deficit
hyperactivity disorder. Brit J of Psychiatry, 19:402–409, 2007.

[4] R A Barkley, M Fischer, L Smallish, and K Fletcher. Young adult outcome of hyperactive
children: adaptive functioning in major life activities. J Am Acad Child Adolesc Psychiatry,
45(2):192–202, Feb 2006.

[5] R A Barkley. Global issues related to the impact of untreated attention-deficit/hyperactivity
disorder from childhood to young adulthood. Postgrad Med, 120(3):48–59, Sep 2008.

[6] J Biederman, C R Petty, M Evans, J Small, and S V Faraone. How persistent is ADHD? A
controlled 10-year follow-up study of boys with ADHD. Psychiatry Res, 177(3):299–304,
May 2010.

[7] J Biederman and S V Faraone. Attention-deficit hyperactivity disorder. Lancet,
366(9481):237–248, Jul 2005.

[8] T W Frazier, E A Youngstrom, J J Glutting, and M W Watkins. ADHD and achievement: meta-
analysis of the child, adolescent, and adult literatures and a concomitant study with college
students. J Learn Disabil, 40(1):49–65, Jan-Feb 2007.

[9] H G Birnbaum, R C Kessler, S W Lowe, K Secnik, P E Greenberg, S A Leong, and A R
Swensen. Costs of attention deficit-hyperactivity disorder (ADHD) in the US: excess costs of
persons with ADHD and their family members in 2000. Curr Med Res Opin, 21(2):195–206,
Feb 2005.

7



[10] F X Castellanos and R Tannock. Neuroscience of attention-deficit/hyperactivity disorder: the
search for endophenotypes. Nat Rev Neurosci, 3(8):617–628, Aug 2002.

[11] E J Sonuga-Barke. Psychological heterogeneity in AD/HD–a dual pathway model of behaviour
and cognition. Behav Brain Res, 130(1-2):29–36, Mar 2002.

[12] E J Sonuga-Barke. The dual pathway model of ad/hd: an elaboration of neuro-developmental
characteristics. Neurosci Biobehav Rev, 27(7):593–604, Nov 2003.

[13] J T Nigg. Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the
state of the field and salient challenges for the coming decade. Biol Psychiatry, 57(11):1424–
1435, Jun 2005.

[14] J T Nigg, E G Willcutt, A E Doyle, and E J Sonuga-Barke. Causal heterogeneity in attention-
deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biol
Psychiatry, 57(11):1224–1230, Jun 2005.

[15] E J Sonuga-Barke and J Sergeant. The neuroscience of adhd: multidisciplinary perspectives
on a complex developmental disorder. Dev Sci, 8(2):103–104, Mar 2005.

[16] R A Barkley. Behavioral inhibition, sustained attention, and executive functions: constructing
a unifying theory of ADHD. Psychol Bull, 121(1):65–94, Jan 1997.

[17] B F Pennington and S Ozonoff. Executive functions and developmental psychopathology. J
Child Psychol Psychiatry, 37(1):51–87, Jan 1996.

[18] M Sakagami, X Pan, and B Uttl. Behavioral inhibition and prefrontal cortex in decision-
making. Neural Netw, 19(8):1255–1265, Oct 2006.

[19] A Diamond. Attention-deficit disorder (attention-deficit/ hyperactivity disorder with-
out hyperactivity): a neurobiologically and behaviorally distinct disorder from attention-
deficit/hyperactivity disorder (with hyperactivity). Dev Psychopathol, 17(3):807–825, 2005.

[20] M Luman, J Oosterlaan, and J A Sergeant. The impact of reinforcement contingencies on
AD/HD: a review and theoretical appraisal. Clin Psychol Rev, 25(2):183–213, Feb 2005.

[21] A R Damasio. The somatic marker hypothesis and the possible functions of the prefrontal
cortex. Philos Trans R Soc Lond B Biol Sci, 351(1346):1413–1420, Oct 1996.

[22] R Martinussen, J Hayden, S Hogg-Johnson, and R Tannock. A meta-analysis of working
memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child
Adolesc Psychiatry, 44(4):377–384, Apr 2005.

[23] E G Willcutt, A E Doyle, J T Nigg, S V Faraone, and B F Pennington. Validity of the exec-
utive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol
Psychiatry, 57(11):1336–1346, Jun 2005.

[24] P J Olesen, H Westerberg, and T Klingberg. Increased prefrontal and parietal activity after
training of working memory. Nat Neurosci, 7(1):75–79, Jan 2004.

[25] T Klingberg, E Fernell, P J Olesen, M Johnson, P Gustafsson, K Dahlström, C G Gillberg,
H Forssberg, and H Westerberg. Computerized training of working memory in children with
ADHD–a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry, 44(2):177–186,
Feb 2005.

[26] M Slusarek, S Velling, D Bunk, and C Eggers. Motivational effects on inhibitory control in
children with ADHD. J Am Acad Child Adolesc Psychiatry, 40(3):355–363, Mar 2001.

[27] R Drechsler, P Rizzo, and H C Steinhausen. Decision making with uncertain reinforce-
ment in children with attention deficit/hyperactivity disorder (ADHD). Child Neuropsychol,
16(2):145–161, Mar 2010.

[28] Shane Frederick. Cognitive reflection and decision making. J. Econ. Perspect., 19(4):25–42,
2005.

[29] S V Burks, J P Carpenter, L Goette, and A Rustichini. Cognitive skills affect economic prefer-
ences, strategic behavior, and job attachment. Proc Natl Acad Sci U S A, 106(19):7745–7750,
May 2009.

[30] T Dohmen, A Falk, D Huffman, and U Sunde. Are risk aversion and impatience related to
cognitive ability? The American Economic Review, 120(54):256–271, 2010.

8



[31] W K Bickel, R Yi, R D Landes, P F Hill, and C Baxter. Remember the future: working memory
training decreases delay discounting among stimulant addicts. Biol Psychiatry, 69(3):260–265,
2011.

[32] S M Jaeggi, M Buschkuehl, J Jonides, and W J Perrig. Improving fluid intelligence with
training on working memory. Proc Natl Acad Sci U S A, 105(19):6829–6833, May 2008.

[33] F McNab, A Varrone, L Farde, A Jucaite, P Bystritsky, H Forssberg, and T Klingberg.
Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science,
323(5915):800–802, Feb 2009.

[34] P J Olesen, J Macoveanu, J Tegnér, and T Klingberg. Brain activity related to working memory
and distraction in children and adults. Cereb Cortex, 17(5):1047–1054, May 2007.

[35] A M Owen, A Hampshire, J A Grahn, R Stenton, S Dajani, A S Burns, R J Howard, and C G
Ballard. Putting brain training to the test. Nature, 465(7299):775–778, Jun 2010.

[36] Y. Lecrubier, E. Weiler, T. Hergueta, P. Amorin, and J. P. Lépine. Mini International Neuropsy-
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Pod Vodárenskou věžı́ 4, Prague, 182 08, Czech Republic
seckarov@utia.cas.cz

Abstract

The rapid development of ad-hoc wireless networks, sensor networks and simi-
lar calls for efficient estimation of common parameters of a linear or nonlinear
model used to describe the operating environment. Therefore, the theory of col-
laborative distributed estimation has attained a very considerable focus in the past
decade, however, mostly in the classical deterministic realm. We conjecture, that
the consistent and versatile Bayesian decision making framework, whose appli-
cations range from the basic probability counting up to the nonlinear estimation
theory, can significantly contribute to the distributed estimation theory.
The limited extent of the paper allows to address the considered problem only very
superficially and shortly. Therefore, we are forced to leave the rigorous approach
in favor of a short survey indicating the arising possibilities appealing to the non-
Bayesian literature. First, we introduce the problem in a general Bayesian decision
making domain and then narrow the scope to the estimation problem. In the ensu-
ing parts, two mainstream approaches to common-objective distributed estimation
are presented and the constraints imposed by the environment are studied.

1 Introduction

From the immense distributed decision making framework, we consider only the fully distributed
decision problem (specifically parameter estimation) in which different agents (network nodes) ob-
tain rather slightly different measurements from the environment. These measurements ideally obey
the same distribution and differ only with respect to a realization of a noise variable. In this regard,
the prescriptive methodology for designing agents proof of systematic error or bias is necessary.
Furthermore, we assume that the agents have the same objective function. Our (practically unreach-
able) goal is to achieve the general consensus on the decision. In other words, if the decision is the
evaluation of the posterior probability of some event, the goal is to achieve the state when all agents
agree on it [22]. The solution has been proposed in [3]. Its time-dependent reformulation follows
[22]:
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Each time instant, the agents first communicate their own distributions among themselves
and then update own distribution by reflecting the obtained distributions from the others.
Following this procedure, the consensus is achieved as its limit case.

Since we deal with distributed estimation problem, it should be emphasized that our distributed
decision problem differs from the team decision making [18],[19] and others. In our case, the
common consensus on the estimate is the primary goal.

The theory of distributed estimation of an unknown common variable of interest has attained the pre-
vailing focus in the last decade. The main cause was the increasing spatial complexity of large-scale
ad-hoc wireless and sensor networks consisting of heterogeneous devices. Such an environment,
more or less limited with respect to the energy, communication and processing resources, calls for
efficient computational paradigms. The main tasks of interest in these networks, closely related
to estimation, comprise in-network routing, signal processing, management, load balancing, sensor
management, change point estimation etc.

From the Bayesian viewpoint, the theory of parameter estimation belongs to the decision theory.
Suppose, that the considered network consists of n ∈ N nodes whose respective scalar or multidi-
mensional measurements y1, . . . , yn are related to some unobservable quantity Θ, called parameter,
some scalar or multidimensional input variables u1, . . . , un and the task consists in estimation of Θ.
This basically means, that the nodes seek the probability distribution of Θ given measurements and
inputs, mostly in the form of a probability density function

fΘ (Θ|y0, y1, . . . , yn, u0, u1, . . . , un) , n ∈ N,

where y0 and u0 form the prior information, e.g. obtained from an expert, from past measurements
or a noninformative prior is used.

The distributed systems can actively benefit from the higher number of participating sensors in the
network and, potentially, from their technical heterogeneity, allowing to measure and compute with
different performance according to the actual state of the observed reality.1

Some examples of distributed estimation problems comprise:

• collective estimation of a physical variable. This case is very important in sensor networks.
Furthermore, it becomes popular in large physical experiments as well.

• fault tolerant systems with the voting circuit, in which several units collectively decide
about a failure of a redundant device. Currently, the fuzzy approach dominates these solu-
tions;

• classification networks, in which several nodes estimate the parameters of classifiers (rep-
resented, e.g., by beta-binomial or Dirichlet-multinomial models). This case is very impor-
tant in bandwidth-limited networks;

• and many others.

From the communication and evaluation strategy, the estimation task in the distributed systems can
be run in two different basic concepts, obviously influencing the network topology:

• The centralized approach in which the network nodes send their data to a dedicated unit
responsible for computations;

• The decentralized approach in which all the network nodes posses and actively exploit own
computing ability.

We will further describe them below.

1A particularly interesting case is the existence of the need of very precise measurements under several
different conditions, preventing the user from using single measuring device.
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Figure 1: Principles of centralized and decentralized schemes. The centralized one (left) embodies
a fusion center (FC) responsible for computation of estimates; in the decentralized concept (right)
the computation task lies on the network nodes disseminating the available information, possibly
partial. Remind, that the network topology of the decentralized scheme may differ from case to
case.

2 Centralized and decentralized approaches

In this section, we describe the centralized and decentralized approaches to distributed parameter
estimation, highlight the principal differences and mention several existing concepts. The purpose
of this section is twofold: to induce contemplation on the pros and cons of the respective approaches
and (maybe more importantly) to let the Bayesians take inspiration from the “disregarded determin-
istic world”. Anyway, the good aspect is that in the Bayesian framework, the estimation mostly
abstracts from the centralization or decentralization of information processing. In both cases, the
basic methods can be the same. Some differences will arise with respect to the convergence prop-
erties of the estimators. Again, we stress that we focus only on the case of distributed estimation of
common parameter.

3 Centralized approach

The centralized approach with a fusion center processing the measurements from the nodes in the
network and potentially propagating the results back to them has appeared with the first occurrence
of the distributed networks. This popular approach is widely used, e.g., in industrial applications,
Internet services etc. However, it significantly suffers from high communication resources and high-
availability (HA) demands to be able to transmit the data between the fusion center and the network
nodes. The plethora of data is likely to saturate the (short term) memory and can lead to high system
load. To some degree, these problems can be solved by data aggregation and quantization, e.g. [22]
and references below.

On top of this, the fusion center represents a potential single point of failure (SPoF) requiring a
special treatment, e.g., redundant hot and cold spare devices, data replications, graceful degradation
systems etc., [28], which in turn increases the complexity of the whole system.

4 Decentralized approach

In the decentralized approach, the estimation is run directly in the nodes which share their infor-
mation with other nodes. The decentralized approach can be further divided to incremental and
diffusion approaches [4]. The former one is similar to the token-ring network topology, in which a
closed cyclic path is performed, i.e., each node communicates with its neighbours within this path.
In this setting, a failure of a link between two adjacent nodes can prevent the network from opera-
tion, hence the problem of SPoFs can be even worse. On the other hand, the diffusion approaches
solve this issue by letting the nodes communicate within their closed neighbourhood, i.e., with their
adjacent neighbours. In this case, the failure of a single link or node does not cause failure of the
whole network, hence the estimation is preserved. It was shown, that the information propagating
through the network leads in the limit case to the consensus [5], [4]. The diffusion approach pos-
sesses the adaptivity property that is very important for ad-hoc network, in which the topology of
the network can dynamically change with time.
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Figure 2: Two basic decentralized approaches. Left: diffusion approach, in which, e.g. node 3 com-
municates with nodes 1,2,4 and 5, while node 6 communicates only with node 4. Right: incremental
approach (token-ring topology), the information sequentially circulates via all the network nodes
which incorporate their contributions to it.

5 Communication constraints

The communication constraints still represent the most frequent restriction in distributed systems.
In the centralized approach, the fusion center is often connected to other nodes via a backbone
network, which enforces high bandwidth requirement. However, if the nodes are connected directly
to the center via dedicated lines, the center must be able to effectively handle the incoming data
traffic using a sort of an efficient switching protocol. This issue is far beyond the scope of the paper,
we only reveal the need for as little traffic as possible.

In the decentralized estimation, the situation is much easier, since although the load of individual
point-to-point communication lines remains the same, the high communication load typical for the
fusion center is avoided. By using efficient network topology, the load can be decreased to a very
low level, respecting the constraints of individual nodes.

Several possible communication strategies comprise:

• communication of all data, i.e., yi, ui and estimates Θ̂, possibly the parameters of distribu-
tion of the latter;;

• communication of sufficient statistics of respective distributions or, if applicable, non-
sufficient statistics whose ancillary complements are naturally known to the network nodes;

• down to 1 bit communication strategy.

The communication of all data is a trivial case. The data quantization, i.e., the compression of data
to be transmitted among the nodes in the network is an interesting option. Such a problem has
been treated, for instance, in [8] and [1] for single node. For a decentralized distributed network,
[13] restrict the local nodes to be data quantizers and develop the optimal design minimizing the
estimation error. These results were further used by [2], [6], [9], [14], [16], [20], [27] and many
others, dealing mostly with few or even one-bit messages. In this light, the assumption of possibility
to communicate, for instance, sufficient statistics, so fundamental in the Bayesian framework, can
simply fail. Therefore, it would be necessary to find out a way to fulfill the potential communication
constraints.

6 Information fusion strategies

There exist several possible strategies for fusion of information obtained from nodes, irrespectively
of the network scheme, topology or constraints. The Bayesian paradigm imposes constraints on
entropy transform between the prior and posterior distribution, measured mostly by the information
entropy (in terms of its maximization) or the Kullback-Leibler divergence and the cross-entropy
(minimization). There are two main representation of the information from several information
sources (i.e., network nodes), namely mixture, i.e. a convex combination of probability density
functions [7], [10], [17], or a weighted likelihood [23], [24] and [25]. The latter has been proved
suitable for distributed dynamic estimation in [21]. The mixture-based information treatment is a
traditional and well-established way. The fusion of incompletely compatible probabilistic represen-
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tations of information still represents a challenge. First steps towards this, exploiting the minimum
cross-entropy principle, can be found, e.g. in [11].

7 Concluding remarks

We have outlined the possible future research trends towards the Bayesian distributed estimation
of common parameter of interest using similar decision makers (estimators) with the same model.
Unlike the traditional single problem oriented solutions employing mostly the non-stochastic meth-
ods, the Bayesian reasoning leads rather to a methodology, abstracting from a particular problem
view. Being applicable to a large class of problems comprising, among others, dynamic estimation
of least-squares problems, classification problems and many others, the distributed Bayesian frame-
work only expects a suitable formulation of the problem. The application of the basic prescribed
methods arising from the methodology can be done usually in a straightforward way.

The future research directions in the field of Bayesian distributed estimation will almost certainly
deal with networks considerably constrained from specific aspects. This issue has been only recently
dealt with from the non-Bayesian viewpoint, e.g., the energy-constrained networks in [12],[15],[26],
the bandwidth constrained networks mentioned above etc.

Another very special issue is the design of intelligent nodes, able to agree on the form of information
to be disseminated. However, this case is rather a part of the multi-agent systems (MAS) theory and
definitely does not belong to the estimation theory.
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Abstract

We are concerned with design of decentralized control strategy for stochastic
systems with global performance measure. It is possible to design optimal
centralized control strategy, which often cannot be used in distributed way.
The distributed strategy then has to be suboptimal (imperfect) in some
sense. In this paper, we propose to optimize the centralized control strat-
egy under the restriction of conditional independence of control inputs of
distinct decision makers. Under this optimization, the main theorem for
the Fully Probabilistic Design is closely related to that of the well known
Variational Bayes estimation method. The resulting algorithm then re-
quires communication between individual decision makers in the form of
functions expressing moments of conditional probability densities. This
contrasts to the classical Variational Bayes method where the moments are
typically numerical. We apply the resulting methodology to distributed
control of a linear Gaussian system with quadratic loss function. We show
that performance of the proposed solution converges to that obtained using
the centralized control.

1 Introduction

Complexity of large-scale uncertain systems, such as tra�c light signalization in urban areas,
prevents e�ective use of centralized design of control strategy. The technology of multi-
agent systems [1] o�ers technical background how to build a distributed control system.
The mainstream multi-agent theory is concerned with deterministic systems for which the
majority of results on communication protocols and negotiation strategies are established.
As a result, many stochastic problems are converted into deterministic formulation and
solved as such. This is typical e.g. in design of distributed tra�c light control, where the
certainty equivalence assumption is used in all agents [2].

Design methodologies for optimal control strategies of large-scale decentralized stochastic
systems are available, e.g. [3], however, the complexity of the decision maker is rather high.
In this paper, we propose to design suboptimal (imperfect) decision makers by imposition
of additional restrictions within an established centralized design methodology. Speci�cally,
we focus on the theory of Fully Probabilistic Control Design (FPD) [4, 5] for centralized
control strategies. This theory is based on minimization of Kullback-Leibler divergence
(KLD) [6] and it has been extended to multiple participants using heuristic arguments
[7, 8]. An independently developed variant of this approach was used in multi-agent setup
in [9]. In this paper, we enforce distribution of control between decision makers via the
constraint of conditional independence. Minimization of Kullback-Leibler divergence under
this constraint is well known as the Variational Bayes approach [10, 11]. Generalization of
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these results yields a design methodology of approximate decision makers that are capable to
design their own control strategy using probabilistic moments obtained from their neighbors.

We study two computation schemes in this contribution. The �rst scheme allows unlimited
communication with small messages. The second scheme allows much lower number of
messages, however, the messages contain much more information than in the �rst case. In
both cases, the Variational Bayes approach is capable to compute approximate results in
limited time depending on the number of iterations.

2 Review of Centralized Fully Probabilistic Design

Consider a probabilistic model of a stochastic system

yt v f(yt|ut, dt−m:t−1), (1)

where symbol y v f denotes that y is a realization from probability density f ; vector yt
denotes system output at discrete time t; vector ut is system input; dt = [y′t, u

′
t]
′ is an

aggregation of output and input, where (.)′ denotes a transposition of vector or matrix; and
dt−m:t−1 = [dt−m, . . . , dt−1] is a matrix of the last m observation vectors. Our aim is to
design a probabilistic control strategy f (ut|d1:t−1) such that the closed loop behavior is as
close to the desired behavior as possible.

The Fully Probabilistic Design is based on probabilistic description of the desired behavior
represented by the target (ideal) probability density, If(d1:t+h), which expresses its aim
and constraints. Closeness of the real and the target behavior is measured by the Kullback-
Leibler divergence. The optimal control strategy on a horizon of length h is then found
recursively for τ = t+ h, . . . , t+ 1,

of(uτ |d1:τ−1) = arg min
f(uτ |d1:τ−1)

KLD

[
f(dt+1:t+h)||If(dt+1:t+h)

]
, (2)

= arg min
f(uτ |d1:τ−1)

Ef(dτ |d1:τ−1)

[
ln

f(dt+1:t+h)
If(dt+1:t+h)

]
, (3)

where Ef(x)(.) is the expected value of the argument with respect to probability density
f(x); it is abbreviated as Ef(x)(x) ≡ E(x) when no confusion can arise. KLD(.||.) is
the Kullback-Leibler divergence between the �rst and the second argument. The optimal
solution can be found in the following form, [12]:

of (uτ |d1:τ−1) = If(uτ |d1:τ−1)
exp[−ω(uτ , d1:τ−1)]

γ(d1:τ−1)
. (4)

Here, functions ω(.) and γ(.) are recursively evaluated as

ω(uτ , d1:τ−1) = Ef(yτ |uτ ,d1:τ−1)

(
ln

f(yτ |uτ , d1:τ−1)
γ(d1:τ )If(yτ |uτ , d1:τ−1)

)
, (5)

γ(d1:τ−1) =
ˆ

If(uτ |d1:τ−1) exp[−ω(uτ , d1:τ−1)] duτ , (6)

initialized at time τ = t+ h as γ(d1:t+h) = 1.

2.1 Special case of Linear Quadratic design

Linear Quadratic Gaussian (LQG) control arise as a special case of FPD (4)�(6), when both
the model and the target probability densities are Gaussian with linear function of their
mean value:

f(yt|ut, d1:t−1) = N (Θψt, R), (7)

If(yt, ut|d1:t−1) = N
([

yt
ut

]
,

[
Qy 0
0 Qu

])
. (8)

Here, N (µ,Σ) denotes Gaussian probability density with mean value µ and covariance Σ;
Θ is a matrix of known parameters; ψt is a vector composed from an arbitrary combination
of elements of yt−m:t−1 and ut−m:t, and any deterministic transformation of these elements.
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Substitution of (8) into (5) at τ = t+ h, i.e. γ(d1:t+h) = 1, yields:

ω(uτ , d1:τ−1) =
1
2
[

ln(QyR−1)− ny + tr(RQ−1
y ) + (Θψτ − yτ )′Q−1

y (Θψτ − yτ )
]
, (9)

= [ψ′τ , 1]Ψτ [ψ′τ , 1]′ (10)

where ny denotes dimension of vector yτ . Note that the �rst three terms in ω(.) are inde-
pendent of uτ and yτ making them irrelevant to this time step. Evaluation of probability
of(uτ |φτ ) from (4) is achieved by reordering the quadratic form in (10) into

[ψ′τ , 1]Ψτ [ψ′τ , 1]′ = [uτ , φ′τ , 1]Ψω,τ [uτ , φ′τ , 1]′, (11)

where uτ was extracted from ψτ (the rest of the elements from ψτ are in vector with time-
delayed values, φτ , related to the time τ), and Ψω,τ is composed of the same elements as
Ψτ in adapted order with respect to vector [uτ , φ′τ , 1]. Since (8) is independent in yτ and
uτ , the marginal on uτ can be written as

f(uτ |d1:τ−1) ∝ exp
(
−1

2
[uτ , φ′τ , 1]Ψu,τ [uτ , φ′τ , 1]′

)
, Ψu,τ =

 Q−1
u 0 Quuτ
0 0 0

u′τQ
−1
u 0 uτQ

−1
u uτ

 .
The joint probability density (4) is then a quadratic form (11) with kernel Ψf,τ = Ψω,τ +
Ψu,τ . The kernel can be decomposed using Cholesky factorization into Ψf,τ = LτL

′
τ where

lower triangular matrix Lτ is decomposed into Lτ =
(

Υτ 0
Ωτ Λτ

)
, with Υτ being triangular

matrix of the same dimension as uτ . Probability density (4) has form
of(uτ |φτ ) = N (−(Υ′τ )−1Ωτ [φ′τ , 1]′, (ΥτΥ′τ )−1). (12)

and the remainder

γ(d1:τ−1) = exp
(
−1

2
[φ′τ , 1]ΛτΛ′τ [φ′τ , 1]′

)
. (13)

The recursion from τ = t+ h to t reveals the same quadratic forms with the exception that
there are additional element in Ψf,τ from function γ(d1:τ−1).

The mean value of (12), i.e. ûτ = −(Υ′τ )−1Ωτ [φ′τ , 1]′, is equivalent to LQG designed strategy
with loss function given by the quadratic form from (9) in exp(.) [4].

3 Distributed FPD via Variational Bayes

Consider a case where (1) describes a complex system, with vector inputs ut =
[u1,t, . . . , un,t], where vectors ui,t, i = 1, . . . , n are logically separated so that they rep-
resent independent decision makers. Without any additional assumptions on the model (1),
solution (2) would be a complex probability density with no guide how to implement it in
a distributed way.

As a �rst step to decentralization of the control strategy, we impose the restriction of
conditional independence of control inputs

f(ut|.) =
n∏
i=1

f(ui,t|.),∀t. (14)

If the solution is in this form, each decision maker can handle its own inputs via f(ui,t|·).
The task is to �nd a way how to design it.

We repeat minimization (3), under constraint (14)
n∏
i=1

of(ui,τ |d1:τ−1) = arg minQ
i f(ui,τ |·)

Ef(dτ |d1:τ−1)

[
ln

f(dt+1:t+h)
If(dt+1:t+h)

]
. (15)

Using the chain rule of probability calculus and de�nitions (5)�(6) we obtain
n∏
i=1

of(ui,τ |d1:τ−1) = arg minQ
i f(ui,τ |·)

KLD

[
f(uτ |d1:τ−1)||of(uτ |d1:τ−1)

]
. (16)
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Minimum of (16) is well known from the Variational Bayes method [11] to satisfy the fol-
lowing set of conditions:

of(ui,τ |d1:τ−1) ∝ exp
(
Ef(u/i,τ |d1:τ−1) [ln of(uτ |d1:τ−1)]

)
, i = 1, . . . , n. (17)

Here, u/i,τ denotes a subset of elements of vector uτ without the element ui,τ , i.e. u/i,τ =
[u1,τ , . . . , ui−1,τ , ui+1,τ , . . . , un,τ ], and ∝ is equality up to normalizing constant.

Substitution of (4) into (17) at each step on the horizon, τ = t + h, . . . , t + 1, yields the
following set of implicit equations for i = 1, . . . , n,

of(ui,τ |d1:τ−1) ∝ exp
(
Ef(u/i,τ |d1:τ−1)

(
ln If(uτ |d1:τ−1)− ω(uτ , d1:τ−1)

))
, (18)

The normalizing constant of (18) is

γi(d1:τ−1) =
ˆ

exp
(
Ef(u/i,τ |d1:τ−1)

[
ln If(uτ |d1:τ−1)− ω(uτ , d1:τ−1)

])
dui,τ , (19)

hence γ(d1:τ−1) required in (5) of the previous step factorizes into γ(d1:τ−1) =∏n
i=1 γi(d1:τ−1).

Typically, set (18) does not have a closed form solution and must be solved iteratively using
the iterative VB (IVB) algorithm. It has been shown that the IVB algorithm monotonically
decrease the KLD in each iteration and thus converging to a local minimum [13].

Note that d1:τ−1 in f(ui,τ |d1:τ−1) are symbolic random variables. This contrasts to the
typical application of the Variational Bayes where d1:τ−1 are measured data.

3.1 Special case of LQG

For the special case of linear Gaussian system discussed in Section 2.1, the Variational Bayes
method [11] is to be applied to Gaussian probability density (12) with logarithm

lnf(uτ |d1:τ−1) = c− 1
2

(uτ − (Υ′τ )−1Ωτ [φ′τ , 1]′)′(ΥτΥ′τ )−1(uτ − (Υ′τ )−1Ωτ [φ′τ , 1]′) (20)

= c− 1
2

[u′τ , φ
′
τ , 1]Φτ [u′τ , φ

′
τ , 1]′, (21)

Here, we use the same notation as in the previous section for φτ , Υτ , and Ωτ , c = ln |Υτ |
which is independent of control action uτ , and Φτ is the kernel of quadratic form (21).
For simplicity, we consider partitioning uτ = [u1,τ , u2,τ ]′, generalization to n partitions
is straightforward. The expected value of (20) with respect to f(u2,τ |d1:τ−1) is again a
quadratic form

Ef(u2,τ |d1:τ−1)(ln f(uτ |d1:τ−1)) = Ef(u2,τ |d1:τ−1)

(
c− 1

2
[u2,τ , ζτ ]

[
Φuu,τ Φuζ,τ
Φζu,τ Φζζ,τ

]
[u′2,τ , ζτ ]′

)
(22)

= c− 1
2

[Ef(u2,τ |d1:τ−1)(u2,τΦuu,τu2,τ ) + ζτΦζu,τE(u2,τ ) + E(u2,τ )Φuζ,τζτ + ζτΦζζ,τζτ ]

(23)

= c− 1
2
ζτΦu1,τζτ , (24)

where Φuu,τ ,Φuζ,τ ,Φζζ,τ are composed of elements of Φτ restructured to match the new
decomposition of the [uτ , φ′τ , 1] to u2,τ , ζτ = [u1,τ , φ

′
τ , 1] and Φu1,τ is given by reordering to

match the quadratic form in ζτ .

Note that (24) is equivalent to (10) and the control law can be obtained using the same
derivation that lead to (12). In this case

f(u1,τ |d1:τ−1) = N (Q1,τ [φ′τ , 1]′, σ1,τ ), (25)

f(u2,τ |d1:τ−1) = N (Q2,τ [φ′τ , 1]′, σ2,τ ), (26)
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Algorithm 1 DP-VB variant of the distributed control design.
O�-line:
Choose control horizon h, target probability density If (d1:t+h), and initial value of
f (0)(ui,τ |·) for each decision maker i = 1 . . . n.
On-line:
At each time t, for each decision-maker i, do:

1. For each τ = t+ h, t+ h− 1, . . . , t do

(a) Start negotiation with counter j = 1, and initial guess f (0)(ui,τ |·),
(b) Compute moments required by the neighbors and communicate them,
(c) Compute jth value of control strategy f (j)(ui,τ |·) using moments obtained from

the neighbors,
(d) If the strategy convergence is not reached and j < jIV B , increase j and goto

(a), stop otherwise.

2. Apply designed control action ui,t from the converged strategy.

where σi,τ is given using Cholesky decomposition of Φui,τ in the same form as in (12) and the
second line follows from equivalent derivation for u2,τ . Now, we can formulate the necessary
moments for substitution into (22):

Ef(ui,τ |d1:τ−1)(ui,τ ) = Qi,τ [φ′τ , 1]′, (27)

Ef(ui,τ |d1:τ−1)(ui,τΦuu,τu′i,τ ) = Qi,τ [φ′τ , 1]Φuu,τ [φ′τ , 1]′Q′i,τ + Φuu,τσi,τ . (28)

This �nalizes the list of results that are necessary to run the IVB algorithm in each time
step of the horizon τ = t+ h, . . . , t+ 1. This variant will be denoted as DP-VB algorithm,
Algorithm 1.

3.2 Alternative evaluations

Note that the set of conditions (18) has to be met for each time of the horizon, τ . Put
together, we may interpret it as a set of n× (h+ 1) conditions of optimality. If the control
strategies f(ui,τ |·) were conditionally independent from f(ui,τ−1|·), then the iterations could
be performed in any order and still guaranteed to converge to a local minimum. This would
be a great property since it would allow asynchronous communication between the decision
makers, and guarantee robustness against lost messages. However, this is not automatically
guaranteed due to dependence f(ui,τ |ui,τ−1). Therefore, a change of order of the time
index can lead to an increase of the KL divergence within one iteration due to inaccurate
γ(d1:τ−1) from (19). However, similar di�culty arise in the case of on-line variational Bayes
and the convergence is still guaranteed by means of stochastic approximations [14]. The
only drawback is slower convergence in comparison to the standard IVB algorithm. We
conjecture that it is also the case in our approach.

If our conjecture holds, then we may change the order of dynamic programming and IVB
iterations. Speci�cally, each decision maker �rst exchange messages about expected val-
ues [Qi,t, . . . , Qi,t+h, σi,t, . . . , σi,t+h] with its neighbors and then designs its strategy using
backward evaluation (5), see Algorithm 2 for details. The new moments are send to the
neighbors for the next iterations. This algorithm will be denoted as VB-DP.

4 Example

Consider the following 3-output 2-input system:

f(yt|ψt,Σ) = N (Θψt,Σy), (29)

where

yt = [y1,t, y2,t, y3,t]′, ψt = [y1,t−1, y2,t−1, y3,t−1, u1,t, u2,t, u1,t−1, u2,t−1]′,
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Algorithm 2 VB-DP variant of the distributed control design.
O�-line:
Choose control horizon h, target probability density If (d1:t+h), and initial value of
f (0)(ui,τ |·) for each decision maker i = 1 . . . n.
On-line:
At each time t, for each decision-maker i, do:

1. Start negotiation with counter j = 1, and f (0)(ui,τ |·).
2. Compute jth value of control strategy f (j)(ui,τ |·) on the whole horizon τ = t+h, . . . t

using moments obtained from the neighbors, evaluate moments required by the
neighbors and communicate them,

3. If the strategy convergence is not reached and j < jIV B , increase j and goto 2, stop
otherwise.

4. Apply designed control action ui,t from the converged strategy.
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Figure 1: Example run of the controlled system. The target values for the inputs and the
outputs are displayed in thin full line. The typical realization of outputs and inputs for all
tested algorithms are also displayed for illustration.

Θ =

[ 0.8 0.2 0 −0.3 0.4 0 0 0
−0.2 0.5 −0.8 0.2 0.5 −0.2 −0.5 0

0 1.1 −0.5 0 0 −0.2 0.3 0

]
. (30)

The target probability densities are

If(yt) = N

 y1,t

y2,t

y3,t

 ,[ 0.01
0.01

0.01

] , If(ut) = N
([

0
0

]
,

[
100

100

])
,

(31)

with values of y1,t, y2,t, y3,t displayed in Fig 1 (solid lines). The choice of diagonal covariance
matrices in (31) allows the convergence of algorithms from Section 3 to the centralized
solution, Section 2.

Three control strategies were tested:

FPD: as the centralized strategy (Section 2.1),
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Figure 2: Convergence of the terminal loss (the sum of di�erences from target values) of the
decentralized DP-VB and VB-DP algorithms to the terminal loss of the centralized FPD
solution as a function of the number of IVB iterations for two variants of system parameters.

DP-VB: decentralized evaluation of the FPD control via multiple VB algorithms, one at
each time τ on the horizon (Section 3.1),

VB-DP: decentralized evaluation of the FPD control via a single the VB algorithm on the
whole horizon (Section 3.2).

A comparative Monte Carlo study with 15 runs of the system with parameter (30) was
performed to establish convergence of the decentralized strategy design to the centralized
one. An example run of the controlled system is shown in Fig. 1. Results of the study are
displayed in Fig. 2 via dependence of the terminal loss on the number of iterations of the
IVB algorithm, jIV B . Note that the results converged to the centralized solution after a
few iterations; the full convergence is allowed using diagonal covariance matrices in (31). As
expected, the DP-VB variant converges faster than the VB-DP. Suitability of each strategy
than depends on the quality of communication between agents. The VB-DP algorithm may
be attractive especially for systems with higher latency in communication.

The di�erence is even more visible on a more demanding system with parameters

Θ =

[ 0.8 0.2 0.5 −0.3 0 0.4 0 0
−0.2 0.5 −0.2 0.2 −0.2 0.5 −0.5 0
0.5 1.1 −0.5 0 −0.2 0 0.3 0

]
. (32)

The results of the same Monte Carlo experiment for the new value of parameter Θ are dis-
played in Fig. 2, right. While the DP-VB algorithm reaches performance of the centralized
FPD after 14 iterations, the VB-DP algorithms requires more than 20 iterations to converge.
The number of iterations required to reach the centralized solution is rather high, since the
IVB algorithm was initialized with f (0)(ui,t|·) = If(ui,t) for both variants. The purpose of
this choice was to verify if the algorithm converges to the correct solution even from poor
initial conditions.

5 Conclusion

The presented methodology for design of approximate decision makers is based on fully
probabilistic control and decentralization is achieved by imposing conditional independence
between control inputs. The general method yields two principle outputs: (i) an iterative
algorithm that is known to systematically decrease the loss function, and (ii) the moments
that needs to be exchanged to achieve optimum performance. Under the condition of di-
agonal covariance matrices of target probability densities, the simulation results suggest
that the decentralized control is able to reach the same performance as the centralized one.
This was achieved at the price of all decision makers having full model of the system and
intensive negotiation with high volume of communication. We have shown in simulation
that the intensity of communication can be lowered by an alternative order of evaluation
and communication. The Variational Bayes approach can cope with limited computational
time, the quality of the solution depends on the number of iterations in the IVB algorithm.
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Further simpli�cations can be achieved by imposing additional restrictions (e.g. in the form
of conditional independence) on the solution.
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Abstract

Merging of information given by different decision makers (DMs) has become a
much discussed topic in recent years and many procedures were developed to-
wards it. The main and the most discussed problem is the incompleteness of given
information. Little attention is paid to the possible forms in which the DMs pro-
vide them; in most of cases arising procedures are working only for a particular
type of information. Recently introduced Supra-Bayesian approach to merging of
information brings a solution to two previously mentioned problems. All is based
on a simple idea of unifying all given information into one form and treating the
possible incompleteness. In this article, beside a brief repetition of the method, we
show, that the constructed merger of information reduces to the Bayesian solution
if information calls for this.

1 Introduction

In this article we bring the answer to a consistency question regarding the final result of information
merging method based on Supra-Bayesian approach (introduced in [7]).

Method itself deals with problem of incomplete and incompatible (having different forms) data
from sources – decision makers. People are trying to solve the incompleteness by developing vari-
ous methods, bases of which are, e.g. semantics, entities and trust [1], reduction of the combination
space by representing the notion of source redundancy or source complementarity [2] or Bayesian
networks and factor graphs [3]. Altogether they often lack one thing – they are usable only if the
information has unified form. The Supra-Bayesian merging solves previously mentioned problems
in three steps. First, we focus on the incompatibility of forms of input data and transform them
into a probabilistic form. Second, we fill in the missing information (in the paper it is called exten-
sion) to resolve the problem of incompleteness. After that we will construct the merger of already
transformed and extended data. Articles related to the proposed topic can be found in [4] and [5].

Section 2 briefly describes the construction of the merger. Section 3 presents an important check of
the solution’s logical consistency: the final merger reduces to the standard Bayesian learning when
the processed data meets standard conditions leading to it. Throughout the text a discrete case is
considered.

2 Basic terms and notation

In the beginning of this section we introduce the basic terms and notation used through the text, then
we give the main steps of the method.

∗Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles Uni-
versity in Prague
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The basic terms we use are as follows:

• a source – a decision maker (e.g. human being), which gave us the information,
– we now pick one source, denoted by S; the explained setup can be, of course, applied to
other sources as well,
• a domain (of the source) – a state space, about which the source provides the information,

– since a domain can be difficult to describe, we use (discrete) random variable to map it
onto preferable space; the range of this mapping consists of finite number of elements
– every source can describe more than one domain; the relation between them and their
ranges maps random vector
• a neighbour of the source S – another source, which has at least one domain (of its consid-

ered random variables) same as S
(note that the range of these variables can differ, so the arising probability measure can be
different for each source)
– we assume that the number of neighbours is finite (for each considered source S); they
are labeled by j = 1, . . . , s− 1 <∞,
– altogether, we have a set consisting of s sources (source S and its s− 1 neighbours),
– we denote random vector of jth source by Yj , set of its realizations by {yj}.

2.1 Transformation of information into probabilistic type

I. Consider that the jth source expressed the information about its domain as
a realization of its random vector Yj denoted by xj .

The transformation to probability mass function (pmf) gYj
will be done via Kronecker delta as

follows:

gYj
(yj) = δ(xj − yj) =

{
1 if xj = a particular realization yj of Yj

0 otherwise. (1)

II. Let jth source give us the conditional expectation of the function of Yj . We would like to deter-
mine the pmf gYj

(yj) = gFj
(fj |pj), where Pj denotes a part of Yj , which is specified by source’s

past experience with realizations {pj} and Fj denotes a part of Yj expressing source’s uncertainty
(ignorance) with realizations {fj}. We will use the maximum entropy principle (see [8], [9]): we
construct a set of all possible pmfs describing Yj and satisfying the expectations, then we choose
the pmf with the highest entropy.

III. Let jth source give us the expectation of the function of Yj . Similarly as in the previous case
we will use the maximum entropy principle to determine gYj (yj) = gPj (pj).

IV. and V. Let the source give a pmf of Yj denoted by gPj
(pj) or conditional pmf of a part of Yj

conditioned by the remaining part denoted by gFj
(fj |pj). These types of information already are in

the targeted probabilistic form.

2.2 Extension

Our first step in constructing the extensions is a unification of the ranges of considered sources
j = 1, . . . , s < ∞, which means construction of random vector Y involving all different random
variables considered by sources. A set of realizations of Y will be denoted by Y = {y} and their
number will be finite (since we assumed range of each source has finite number of realizations).

The decomposition of Y according to jth source then arises naturally:

• if jth source has its random vector decomposed into two parts Yj = (Fj ,Pj) (as intro-
duced in previous section), the decomposition of Y will be: Y = (Uj ,Fj ,Pj), where Uj

(with realizations {uj}) stands for the remaining realizations in Y unconsidered by jth
source;

• if for jth source holds that Yj = Pj , then the decomposition of Y will be: Y = (Uj ,Pj),
where again the part Uj denotes the remaining random variables in Y unconsidered by the
source.
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The yet unconstructed merger h̃ serves us for the extension of pmfs gPj
and gFj |Pj

to g(j)Y describing
the union of neighbours’ ranges. If the conditional pmf gFj |Pj

is available, then the extension is:

g
(j)
Y (y) = h̃(uj |fj ,pj)gFj

(fj |pj)h̃(pj), where h̃(pj), h̃(uj |fj ,pj) and h̃(uj |pj) are marginal and

conditional versions of h̃. We proceed similarly if the marginal pmf gPj
is available.

2.3 Final merger

After successfully dealing with the transformation and extension of given information we can derive
the merger. According to the Bayesian framework [10] our merger will be following pmf:

h̃ = argmin
ĥ∈Ĥ

Eπ(h|D)[L(h, ĥ)|D],

where: Ĥ denotes a set of all possible estimates ĥ of h, D stands for a matrix consisting of extended
probability vectors g(j)Y , π(h|D) is the posterior pdf of h based on D, L(. , .) is a loss function.

Since h and ĥ are pmfs, the loss function should measure the distance between them. In particular,
we choose the Kerridge inaccuracy K(. , .) (see [11]). We then get the following identity (after using
Fubini’s theorem and a little bit of computation; H is a probabilistic simplex containing h-values):

argmin
ĥ∈Ĥ

Eπ(h|D)

[
K(h, ĥ)|D

]
= . . . = argmin

ĥ∈Ĥ
K
(

Eπ(h|D)(h|D), ĥ
)
.

Kerridge inaccuracy reaches the minimal value if its arguments are equal almost everywhere (a.e.)
(see [11]). Then the following equation holds:

h̃ = argmin
ĥ∈Ĥ

Eπ(h|D)

[
K(h, ĥ)|D

]
= Eπ(h|D)(h|D).

The only problem is we do not have the posterior pdf π(h|D) of h, so before we actually get to
the formula expressing the final merger h̃ (final estimate of h) we have to choose π(h|D). Again
we will use maximum entropy principle. This time we are looking for the element with highest
entropy subject to additional constraints. The constraints will be connected with the opinion of
source S about the distance of jth source from the unknown pmf h using Kerridge inaccuracy (for
all j = 1, . . . , s). They are expressed by

Eπ(h|D)

(
K(g

(j)
Y , h)|D

)
≤ βj(D). (2)

Thus, to obtain the optimal π̃(h|D) we have to solve following optimization task:

π̃(h|D) = argmin
π(h|D)∈M

[∫
H

π(h|D) log π(h|D)dh
]
, (3)

where M =
{
π(h|D) : Eπ(h|D)(K(g

(j)
Y , h)|D)− βj(D) ≤ 0, j = 1, . . . , s,

∫
H
π(h|D)dh− 1 = 0

}
.

By constructing and rearranging the Lagrangian L(. , .) of the task (3) we get that its minimum is
reached for pdf of Dirichlet distribution Dir({νy}y∈Y):

π̃(h|D) =
1

Z(λ(D))

∏
y∈Y

h(y)νy−1 with parameters νy = 1 +

s∑
j=1

λj(D)g
(j)
Y (y), ∀ y ∈ Y.

Once we have computed the posterior pdf, we can go back to the expressing the final merger (the
optimal estimate h̃ of h). Denote the number of realizations of Y by n (<∞) and use the properties
of Dirichlet distribution, particularly

Eπ̃(h|D)[h(y)|D] =
νy
ν0
, where ν0 =

∑
y∈Y

νy =
∑
y∈Y

1 +

s∑
j=1

λj(D)

=1︷ ︸︸ ︷∑
y∈Y

g
(j)
Y (y) .

We get following result:

h̃(y) =
1 +

∑s
j=1 λj(D)g

(j)
Y (y)

n+
∑s
j=1 λj(D)

. (4)
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3 Connection to the Bayesian solution

As promised earlier (see Section 1) we will now check if the final merger (4) reduces to a standard
Bayesian learning if merging scenario meets conditions leading to it. First we will derive the empi-
rical pmf via Bayesian approach, second we will reformulate the problem so that our merger can be
applied, compute the empirical pmf and compare the results.

3.1 A Bayesian view

Let

- Y be a discrete random variable with finite number of realizations {y} = Y ,

- θ be a following random vector: θ = (P(Y = y))y∈Y = (θy)y∈Y . Then let X1, . . . , Xs,
(s < ∞), denote the sequence of observations about Y , which will be considered as inde-
pendent random variables with the same distribution as Y (depending on θ).

If we assume that

- the prior distribution of θ = (θy)y∈Y is Dirichlet distribution Dir({αy}y∈Y), meaning

q(θ) ∝
∏
y∈Y θ

αy−1
y ,

- the conditional probability of Xj , j = 1, . . . , s, conditioned by θ is

fXj
(xj |θ) =

∏
y∈Y θ

δ(xj−y)
y , where δ(.) stands for Kronecker delta (see (1)),

the posterior pmf of θ based on X1, . . . , Xs is then

π(θ|X1 = x1, . . . , Xs = xs) ∝ q(θ)
s∏
j=1

fXj (xj |θ)

=
∏
y∈Y

θαy−1
y

s∏
j=1

∏
y∈Y

θδ(xj−y)
y =

∏
y∈Y

θ
αy+

∑s
j=1 δ(xj−y)−1

y (5)

Since the formula (5) is the pdf of Dirichlet distribution Dir
({

αy +
∑s
j=1 δ(xj − y)

}
y∈Y

)
, we

can easily compute the conditional expectation of θy conditioned by X1, . . . , Xs as follows:

Eπ(θ|X1,...,Xs)(θy|X1 = x1, . . . , Xs = xs) = P̃ (Y = y) =
αy +

∑s
j=1 δ(xj − y)∑

y∈Y

[
αy +

∑s
j=1 δ(xj − y)

]
=
αy +

∑s
j=1 δ(xj − y)∑

y∈Y αy + s
(6)

Under the following choice:
αy = 1 ∀ y ∈ Y (7)

formula (6) will look as follows

P̃ (Y = y) =
1 +

∑s
j=1 δ(xj − y)∑
y∈Y 1 + s

. (8)

If n denotes the number of realizations of Y , then: P̃ (Y = y) =
1+

∑s
j=1 δ(xj−y)
n+s .

Note: The first part of (8) – 1∑
y∈Y 1+s – can be considered as the prior pmf of Y , because if there is

no available information, we will get: P̃0(Y = y) = 1∑
y∈Y 1+s . Then, the choice (7) coincides with

the statement, that the prior pmf for Y is a pmf of Uniform distribution.
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Illustrative example:

Assume we are interested in the changes of the stock price. Y will now be an identity mapping from
the set consisting of 3 elements: 1 (increase), 0 (stagnation), -1 (decrease). We now get a sequence
of data - opinions from independent experts: {1,−1, 1, 1, 0, 1, 1,−1, 1, 1}. Then the estimate of the
probabilities will be (regarding the (7)):

P̂ (Y = 1) = 1+7
3+10 = 8

13 , P̂ (Y = 0) = 1+1
3+10 = 2

12 , P̂ (Y = −1) = 1+2
3+10 = 3

13 .

3.2 Merging approach

Now we reformulate and handle the same information scenario as in Subsection 3.1 by using the
proposed information merging.

Let us have a group of s (independent) sources, all of them describing the same domain and range.
Therefore sources are neighbours and so the merging can be applied on them. The relation between
domain and range maps discrete random variable Y , realizations of which are denoted by {y} = Y .

Assume also that the information they gave are the values of Y , denoted by x1, . . . , xs. Now we can
follow the steps introduced in the previous sections:

1. transformation: (non-probability form into probability form)

– xj will be expressed (in the probability form) as follows: gYj=Y
(yj = y) = δ(xj − y),

2. extension: (from particular domains to the union of all considered domains)

– since the sources have the same domain, Y , the union is also Y ,

– because of that, the extended version of probabilistic form of given information will be:

g
(j)
Y (y) = δ(xj − y),

3. merging: now that we have probabilistic information extended on Y , we can use the merger (4):

h̃(y) =
1 +

∑s
j=1 λj(D)g

(j)
Y (y)∑

y∈Y 1 +
∑s
j=1 λj(D)

=
1 +

∑s
j=1 λj(D)δ(xj − y)∑

y∈Y 1 +
∑s
j=1 λj(D)

,

which for particular choice λ1(D) = . . . = λj(D) = . . . = λs(D) = 1 has following form:

h̃(y) =
1 +

∑s
j=1 δ(xj − y)∑
y∈Y 1 + s

, (9)

which coincides with (8). That is if we assume that the sources have the same reliability factor (see
subsection 2.3) and it is equal to 1, the final merger (4) will reduce to the standard Bayesian learning
considered in Subsection 3.1.

Illustrative example:

Our results can be easily applied on the example in the previous section: we have 9 independent
sources, which have the same domain. Therefore they are neighbors. All given information are just
values, we have to transform them into probabilities (see Section 2.1). Since they also have the same
range no extension is needed, so we can directly proceed to the merging. According to (9) results
are the same as in the example in Subsection 3.1.

Remark

In the note after the final merger (8) we brought the explanation of what should its first part repre-
sent – generally, it stands for the prior pmf for considered random vector Y (see (4)). In this paper,
the prior pmf of Y is a pmf of uniform distribution. But we will be allowed to use another prior
distribution if we choose constrained minimum cross entropy principle (see [9]) for determination
of the posterior pdf (see subsection 2.3) instead of constrained maximum entropy principle. It is
because the maximum entropy principle coincides with minimum cross entropy principle when prior
distribution is uniform.
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4 Conclusion

This paper brings an important conclusion regarding a new method for merging of information,
which successfully deals with the different types of given partially overlapping information and also
with problem of missing data. Since the method is based on Bayesian framework, we showed that
it reduces to a standard Bayesian learning if independent identically distributed data are at disposal
for parameter estimation. Still there are some open problems and topics of the future work, e.g.
the choice of constraints βj(D) in (2), choice of prior distribution (see previous remark) and the
extension to the continuous space.
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Abstract

The paper considers estimation of Bellman function using revision of the past
decisions. The original approach is further extended by employing predictions
coming from an imperfect predictor. The resulting algorithm speeds up the con-
vergence of Bellman function estimation and improves the results quality. The
potential of the approach is demonstrated on a futures market data.

1 Introduction

The dynamic programming (DP) is clever and effective framework in many problems [1, 2]. Unfor-
tunately, it also suffers by many issues such as curse of dimensionality [6]. Moreover, the incomplete
knowledge and uncertainty makes the dynamic programming task hardly solvable, although the an-
alytical solution of DP task is known [5]. The approximate dynamic programming (ADP) tries to
solve the DP tasks and fight with all the technical issues. There are many ways to approximate the
dynamic programming, but all of them assume that the approximation is precise enough to solve the
problem. There is only a few approaches implicitly assuming the non-ideal or imperfect approxima-
tion. This paper presents such a approach related to solution of Bellman equation[1], i.e. estimation
of Bellman function.1

The value iteration algorithm [1, 2, 4] makes the theoretical ground for estimation of Bellman func-
tion. It also suffers by dimensionality [4], which is often solved by approximate methods (see [3]
for a review). There is an duality relation between optimal decision rule and Bellman function [1]
and value iteration uses the idea of the convergent improving of Bellman function and decision rule
- both together. Unfortunately, the value iteration is difficult to solve for tasks with continuous vari-
ables. We try to approximate Bellman function in value iteration and to speed up the convergence
by searching the samples of the optimal decision rule [7]. The present approach can be extended
using the prediction. This extension can bring only restricted impact, therefore must be considered
a non-ideal predictor and its properties. Hence, the paper presents the imagination of the ideal and
non-ideal predictor and their influence to estimation of Bellman function. These imaginations are
compared and we point out the break, where the non-ideal one stops working. Respecting such a
property, we can improve the estimation of Bellman function.

The paper briefly introduces the dynamic programming and estimation of Bellman function in Sec.
2. Then introduces the revisions and the related optimality criterion (Sec. 3) and considers the
extension of the approach by additional usage of ideal and non-ideal prediction (Sec. 4). Finally,
tests the presented idea on the task of trading commodity futures (Sec. 5).

1also called value function or cost-to-go function
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2 Dynamic programming and revisions

We consider discrete time t ∈ {1, 2, . . . , T} = t∗, where T is horizon. We consider decision maker,
which is human or machine with particular aims to a part of world, so-called system. The decision
maker observes the system and obtains observation yt, then designs decision ut and applies it to the
system, this process is repeated at each time t ∈ t∗. The information available to design decision ut
is called knowledge Pt and consists of past observation and past decisions, Pt = {y1, y2, . . . , yt} ∪
{u1, u2, . . . , ut−1}. The decision maker designs a decision rule, ut = πt(Pt). The aim of the
dynamic programming is to design the sequence of decision rules π1, π2, . . . , πT , so-called strategy,
in order to maximize the sum of the gain functions

∑T
t=1 gt under the conditions above.

We consider the following task properties: (i) The decision maker and its environment work in
open loop, i.e. decisions have influence neither on the environment behavior nor future observa-
tion; (ii) gain function has form gt(Pt, ut) and it depends at last n observations and decisions, i.e.
gt(yt−n, . . . , yt, ut−n, . . . , ut), where n is finite number.

2.1 Finite and infinite horizon

The optimal rule for finite horizon T can be constructed value-wise (see [5])

πo
t (Pt) = arg max

ut

E [gt + Vt+1(Pt+1)|ut, Pt] , (1)

where function Vt+1(.) is Bellman function and it is given by recurrence

Vt(Pt) = max
ut

E [gt + Vt+1(Pt+1)|ut, Pt] (2)

with the terminal condition
VT+1(PT+1) = 0. (3)

The equations (1, 2, 3) form the algorithm of dynamic programing with finite horizon T . This
algorithm is important for revisions.

We consider task with infinite horizon T = +∞. Consequently, the solution has stationary form:

πo(Pt) = arg max
ut

E [gt + V(Pt+1)|ut, Pt] , (4)

where function V is stationary Bellman function and it is given by recurrence

V(Pt) = max
ut

E [gt + V(Pt+1)|ut, Pt] . (5)

The equation (4) contains two terms at right-hand side. In general, both therms in (4) can be calcu-
lated difficultly due to uncertainty, incomplete knowledge, demanded prediction etc. Hence, ADP
considers approaches how to calculate the terms, or to approximate them adequately. We focus on
the approximation of Bellman function.

2.2 Estimation of Bellman function

Let us consider the infinite horizon task. The equation (4) contains two terms at right-hand side.
First term is gain function gt, which can be evaluated under knowledge Pt for the considered shape
of gt. Second term is Bellman function V(.) in stationary form applied on unavailable knowledge
Pt+1. Under knowledge Pt the decision maker must predict further knowledge Pt+1 and estimate
Bellman function.

Let us assume that we have ideal predictorMI(.) such as it can predict Pt+1 =MI(Pt). Equation
(5) can be written for each time index i ∈ {1, . . . , t}

V(Pi) = max
ui

E
[
gi + V(MI(Pi))|ui, Pi

]
. (6)

The obtained t-equations system contains the main information about Bellman function V(.). As-
suming the knowledge of the optimal decisions uo1, . . . , u

o
t , the system is transformed to final form:

V(Pi) = E
[
gi + V(MI(Pi))|uoi , Pi

]
, for i ∈ {1, . . . , t}. (7)
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This equations system contains only unknown function V(.) and can be used to estimation Bellman
function [7]. The information contained in (7) is not full, therefore this system can bring only
an approximate solution. This approximate solution can be found considering approximation of
Bellman function in parametrized form V(.) ≈ V (.,Θ), where Θ is finite dimensional unknown
parameter. The system (7) characterizes points of Bellman function and inserting the approximation
V (.,Θ) the system is transformed to system for unknown variable Θ. Typically, the number of
equations in (7) is bigger than dimension of parameter Θ. Hence, the best estimation of parameter
Θ̂ is searched by regression methods.

This approach originates from value iteration [4] and the system (7) can be interpreted as subsystem
of the full system:

V(P ) = E
[
gi + V(MI(P ))|πo(P ), P

]
, for P ∈ P ∗. (8)

Bellman function V(.) is a solution of system (8). The formal difference between system (7) and
(8) is in the used knowledge. While system (8) contains all possible values of P , the system (7)
contains only the realizations passed during the decision process P1, P2, . . . , Pt. We have assumed
the knowledge of the optimal decisions related to these realizations, therefore the term πo(P ) is
known only for these realizations uoi = πo(Pi) for i ∈ {1, 2, . . . , t}. All in all, the system (8)
contains a full information about Bellman function, whereas the system (7) contains only t points of
Bellman function.

3 Revisions

The previous approach depends on the possibility to find the optimal decisions uo1, . . . , u
o
t for the

given knowledge Pt. This is possible to obtain by the revisions.

The revision is the reconsideration of the decision under another knowledge than was used to design
it. To design decision the maximal available knowledge is used, but we can redesign the decision
under higher knowledge; let us denote the rules and the decisions by superscript, which characterizes
the knowledge used to design the rule, e.g. ut+i

t = πt+i(Pt) is redesign of the tth rule/decision under
knowledge Pt+i. But we omit the superscript, when the rule/decision is designed under natural
conditions ut = utt = πt

t(Pt) = πt(Pt) is rule/decision designed under the knowledge available to
design it. This differs the revision and the decisions. One clever way of this redesign is solving the
same task, but with the finite horizon T ≡ t. We can reconsider all decision using the equations (1,
2, 3). And obtain the revision based on the knowledge Pt:

U t
t = {ut1, ut2, ut3, . . . , utt}, (9)

where uti = πt
i(Pt) for i ∈ {1, 2, . . . , t}. The sequence U t

t is called t-revision. Due to asymptotic
properties of DP [5], the revisions tends to optimal values, i.e. uti = πt

i(Pi)→ πo
i (Pi) = uoi .

3.1 Optimality of revision

For our special shape of the gain function, the convergence can be interpreted as weighting of the
influence of the terminal condition (3) and information contained in data, inserted into gt. The
algorithm of searching of t-revision goes backwards and from design of πt

t(.) to πt
1(.). The terminal

condition (3) influences a decision rule πt
i(.) via Bellman equation (2). But the information-rich

data can quickly decrease the influence, such as πt
t(.) is influenced, but further πt

t−1(.), πt
t−2(.), . . .

are influenced less and less. When the influence of terminal condition is lost for l ∈ {1, 2, . . . , t}
and πt

l (.) is independent on terminal condition (3), then the decision rule πt
i(.) maps the knowledge

to optimal decision, where i ∈ {l, l − 1, l − 2, . . . , 1}. The optimality is given by the independence
on the terminal condition and the absolute dependence on the data.

The issue is to recognize, whether the optimality was reached. This factor can negative influence
the potential of estimation of Bellman function. The bad recognized optimality can lead in: learning
from non-optimal decisions, i.e. adding the non-valid equations to system (7); or redundant omission
of some optimal decisions, i.e. omission available equations of system (7). Hence, the preciseness
of optimality recognition is required.

3



The possible way how to recognize the optimal decision lies in independence on the terminal con-
dition (3). Let us consider the terminal condition in form:

VT+1(PT+1) = f(PT+1), (10)

where f(.) is general function of PT+1. Let us denote the class of all those functions F. The revision
algorithm (1, 2, 3) can be generalized by usage the terminal condition (10) instead of (3). Then, the
revision can be written as function of knowledge and terminal condition uti = πt

i(Pi, f).

Finally, the revision of decision uti equals optimal decision uoi , if the revision does not depend on
terminal condition (10), i.e.

∃ũi ∈ u∗ ∀f ∈ F πt
i(Pi, f) = ũi. (11)

and the constant ũi is the optimal decision, uoi = ũi.

The impact of this proposition is great, because it represents the inter-connection between the finite
and infinite horizon task. The proposition gives algorithm how to use the generalized finite horizon
task (1, 2, 10) to find some optimal decisions of infinite horizon task (4, 5). Unfortunately, the
proposition does not guarantee that any optimal decisions will be found. Typically, there exists
an index to such that revisions ut1, u

t
2, . . . , u

t
to are optimal and independent on f ; and revisions

utto+1, . . . , u
t
t cannot be decided, whether are optimal because of the dependence on f .

The proposition uses simply idea that the interconnection between two consequent decisions is done
via Bellman equation and the connection term is Bellman function. Using the right Bellman function
Vt+1(.) we could connect the finite horizon task and infinite horizon task easily. Unfortunately,
Bellman function is unknown therefore the proposition must go over all possible candidates f ∈
F, i.e. over all possible interconnections. Having a bit information about Bellman function, it is
possible to exclude the impossible candidates and use the proposition over subset F′ ⊂ F containing
only the possible ones. This idea can be reached by usage of predictions.

4 Revision and prediction

As was mentioned above, we can operate with ideal predictor MI(.) such as Pt+1 = MI(Pt).
Having the ideal predictor, we can use it recursively to predict Pt+i for any i > 0 and use the Pt+i

as information for revision and searching its optimality. Such a approach can help us to increase the
value to and use all available equations of system (7).

Let us consider the revision algorithm. For Pt, the algorithm starts with terminal condition (10). For
one-step prediction Pt+1, the algorithm has one more step and due to back recursion in (2) obtain
Vt+1, i.e. the restricted analogy of condition (10), after one step:

Vt+2(Pt+2) = f(Pt+2), (12)
Vt+1(Pt+1) = max

ut+1

E [gt+1 + Vt+2(Pt+2)|ut+1, Pt+1] , (13)

where we expect that f ∈ F, and Vt+1(Pt+1) ∈ F1 ⊆ F.

This expectation originates from properties of Bellman equation, which can be viewed as operator
on class F, i.e. Vi = T (Vi+1), see [1, 2]. The recursion (2) converges for each terminal condition.
Consequently, the operator has following property limn→+∞ T n(f) = V , where T n(.) is operator
T (.) n-times recursively applied onto f ∈ F and V is Bellman function. Hence, we can expect that
the operator T (.) applied on all functions in F produces the subset of F:

F1 = T (F) and F1 ⊆ F. (14)

Furthermore, each prediction step can be used as one more application of operator T (.), which
reduces the set of possible candidates to terminal Vt+1. The h-step prediction generates h subsets
of F as is depicted at Fig. 1. The usage of prediction can be interpreted as starting the optimality
criterion from less set Fi instead of F, which can result in earlier recognizing the optimal decisions,
i.e. obtaining higher value to.

Of course, we do not have the ideal predictor MI(.), but often we can use an predictor P̂t+1 =
M(Pt). We assume that the predictor M(.) has some restricted preciseness and degenerates the
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Figure 1: The convergence of operator J in space of possible Bellman functions: V is optimal
Bellman function, F is space of possible Bellman functions.

operator T → T̂ . Let us denote: F̂1 = T̂ (F) and F̂i+1 = T̂ (F̂i). Typically, the non-ideal predictor
predicts quite good first one or two steps and then the predictions go worse. The expected influence
to Bellman function is depicted at Fig. 1, where the ’Normal predictor’ gets lost in second step and
the operator T̂ converges to the other function. Despite of this fact, the non-ideal predictor can be
successfully used, when the number of prediction steps is restricted. The restriction equals to index
of the last set including Bellman function; e.g. it can be used only as one-step predictor in case
depicted at Fig. 1. We expect that this phenomenon would be observable as relation between length
of used predictions and results quality. We expect slowly increase followed by rapid decrease of
results quality according to the growing prediction length.

5 Experiment

The following experiment should demonstrate the expected properties. We compare: (i) the original
method to estimation of Bellman function, where the optimal revisions were searched at available
data, i.e. the terminal condition (10) was taken over whole set F; and (ii) the presented method,
where the optimal revisions were searched at available data extended by prediction, i.e. the terminal
condition (10) was taken over the subset F̂i ⊆ F. The set of experiments contains 11 experiments
per data sequence. Each experiment is related with one prediction length 0-10, where zero length is
the original task using F and the other lengths l ∈ {1, 2, . . . , 10} corresponds with the systems of
sets F̂1, . . . , F̂10 (see previous section).

We expect that results quality will grow with length of prediction to some break value. Then, the
result quality will decrease. This expectation is caused by the imagination of the non-ideal predictor
analogical to Fig. 1, where Bellman function is in F̂1, but it is not in F̂2. Thus, we expect that each
data set should have some length of prediction l, where Bellman function is in F̂l, but it is not in
F̂l+1. The approach to estimate of Bellman function should work most effective, when starts with
the smallest subset F̂l containing the Bellman function V(.). Otherwise, when it starts with subset
F̂l+1, it need more information to find Bellman function, because it got lost by irrelevant set F̂l+1

and the convergence is delayed. We expect that this phenomenon should be observable as results
quality increase for prediction length 1, 2, . . . , l, followed by quality decrease for prediction length
l + 1, . . . , 10.

The experiment was done on trend prediction task based on the trading with commodities. The task
is classical price speculation, where decision maker tries to predict future price trend and chose the
decision to follow the trend. The gain function has shape:

gt = (yt − yt−1)ut−1 + C|ut−1 − ut|, (15)

where yt−1, yt are samples of price sequence, ut−1, ut are decisions and C is transaction cost. The
decision can be chosen from two-values set ut ∈ {−1, 1}, where ut = 1 characterizes the future
price increase and ut = −1 characterizes decrease.
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The data used for experiment are day samples of price, so-called close price. The used time series
are related to following five commodities: Cocoa - CSCE (CC), Petroleum-Crude Oil Light - NMX
(CL), 5-Year U.S. Treasury Note - CBT (FV2), Japanese Yen CME (JY), Wheat - CBT (W). The
used data were collected between January 1990 and September 2005, which is about 4000 trading
days.

The experiment designs the decisions via approximated (4). The predictor M(.) is based on the
autoregressive model, yt+1 = αyt + βyt−1 + et, where α, β are model parameters and et is noise,
et ≈ N(µ, σ). The model parameters are estimated via Bayesian estimation [5]. The prediction is
calculated recursively P̂t+1 = M(Pt), and P̂t+i+1 = M(P̂t+i) for i ∈ {1, . . . , 9}. And Bellman
function is approximated in parametrized form:

V(Pt) ≈ V (Pt,Θ) = Θ′Ψt(Pt), (16)

where Θ is vector of n+ 1 parameters and Ψt(Pt) = (yt, yt−1, . . . , yt−n+1, 1)′, which is 1st order
Taylor expansion of Bellman function V(.). The parameters Θ are estimated via system (7) and the
count of equation to in system (7) is estimated via revisions and the optimality proposition.

Table 1 contains experiment results. According to our expectation, the results written by bold font
have the expected growing quality. As can be seen, the prediction improved the results quality
in all datasets according to non-prediction experiment for l = 0. The length of growing trend
is related with feasibility of the predictor to the dataset, and it was expected that the 1- or 2-step
prediction can improve the results. Hence, the results of 3-step prediction at CC and JY can be
viewed as unexpected success. A little surprising fact is the quality of results after the increase.
We have expected the rapid decrease due to worse initial conditions, but a few experiments reached
comparatively results or better results. The expected behavior can be demonstrated at CL dataset,
where l ∈ {0, 1, 2} the results quality grows and then fall down and stay under the value for l = 0.
An representative of the surprising is JY dataset, which grows for l ∈ {0, 1, 2}, then it decrease,
but then it increases and reaches better results than for l ∈ {0, 1, 2}. The mentioned facts lead to
conclusion that the prediction improve the results for a few steps. But after these steps, there cannot
be expected any property or trend related to the prediction length.

6 Conclusion

The paper presents the approach to estimation of Bellman function via revisions. The revisions are
originally calculated from the knowledge available to design the decision. The paper considers ex-
tension of this approach by the usage of predictions. It is expected the better convergence to Bellman
function. The idea is considered for ideal predictor and non-ideal predictor. The ideal predictor can
simply improve the algorithm, but it is unavailable, whereas all available predictors can be classified
as non-ideal. The imagination of the non-ideal predictor leads to expectation that the prediction can
improve the approach, when is used a restricted number of prediction steps.
The idea is experimentally tested on trend prediction task, where works quite well. The results have
verified the idea that the improvement is related to restricted number of prediction steps. But sur-
prising was the fact that after these few steps, the improvement can be reached, but randomly. This
opens the question of the better analysis of the problem: the paper describes only a raw imagination
of the problem and the convergence in set F, and relations between sets F̂i and F̂i+1 can be more
complex than was presented. This fact is topic of the further consideration.
Moreover, the paper presents that the number of prediction steps should be restricted, but it does not
give any guidelines how to estimate the right length of the prediction. The right guidelines can make
the approach suitable for applications and should be also considered in future.

Ex. 0 1 2 3 4 5 6 7 8 9 10
CC -13,0 -13,0 -10,7 -3,5 -10,9 -6,6 -12,8 -15,2 -15,2 -8,2 -6,3
CL -14,2 -9,6 -6,8 -16,0 -23,8 -21,4 -14,9 -16,7 -21,7 -25,1 -24,8
FV2 2,6 24,2 23,1 19,2 22,1 24,8 24,7 27,1 27,4 23,7 16,5
JY 8,3 20,4 22,5 40,6 28,3 30,9 30,8 44,6 39,9 15,5 1,7
W 2,2 16,0 17,5 12,9 11,0 13,9 10,7 7,6 8,1 13,3 12,6

Table 1: Results of experiments Ap1-Ap10 in $1000 USD.
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